From a357af32f8cf89c5e5c51afd21ae57011ac02f19 Mon Sep 17 00:00:00 2001 From: Peter Jung Date: Sat, 3 Aug 2024 22:05:51 +0200 Subject: [PATCH] sched-ext Signed-off-by: Peter Jung --- Documentation/scheduler/index.rst | 1 + Documentation/scheduler/sched-ext.rst | 316 + MAINTAINERS | 13 + drivers/tty/sysrq.c | 1 + include/asm-generic/vmlinux.lds.h | 1 + include/linux/cgroup.h | 4 +- include/linux/sched.h | 5 + include/linux/sched/ext.h | 204 + include/linux/sched/task.h | 3 +- include/trace/events/sched_ext.h | 32 + include/uapi/linux/sched.h | 1 + init/init_task.c | 12 + kernel/Kconfig.preempt | 26 +- kernel/fork.c | 17 +- kernel/sched/build_policy.c | 10 + kernel/sched/core.c | 231 +- kernel/sched/cpufreq_schedutil.c | 50 +- kernel/sched/debug.c | 3 + kernel/sched/ext.c | 6532 +++++++++++++++++ kernel/sched/ext.h | 69 + kernel/sched/fair.c | 22 +- kernel/sched/idle.c | 2 + kernel/sched/sched.h | 171 +- lib/dump_stack.c | 1 + tools/Makefile | 10 +- tools/sched_ext/.gitignore | 2 + tools/sched_ext/Makefile | 246 + tools/sched_ext/README.md | 258 + .../sched_ext/include/bpf-compat/gnu/stubs.h | 11 + tools/sched_ext/include/scx/common.bpf.h | 401 + tools/sched_ext/include/scx/common.h | 75 + tools/sched_ext/include/scx/compat.bpf.h | 28 + tools/sched_ext/include/scx/compat.h | 187 + tools/sched_ext/include/scx/user_exit_info.h | 111 + tools/sched_ext/scx_central.bpf.c | 361 + tools/sched_ext/scx_central.c | 135 + tools/sched_ext/scx_qmap.bpf.c | 706 ++ tools/sched_ext/scx_qmap.c | 144 + tools/sched_ext/scx_show_state.py | 39 + tools/sched_ext/scx_simple.bpf.c | 156 + tools/sched_ext/scx_simple.c | 107 + tools/testing/selftests/sched_ext/.gitignore | 6 + tools/testing/selftests/sched_ext/Makefile | 218 + tools/testing/selftests/sched_ext/config | 9 + .../selftests/sched_ext/create_dsq.bpf.c | 58 + .../testing/selftests/sched_ext/create_dsq.c | 57 + .../sched_ext/ddsp_bogus_dsq_fail.bpf.c | 42 + .../selftests/sched_ext/ddsp_bogus_dsq_fail.c | 57 + .../sched_ext/ddsp_vtimelocal_fail.bpf.c | 39 + .../sched_ext/ddsp_vtimelocal_fail.c | 56 + .../selftests/sched_ext/dsp_local_on.bpf.c | 65 + .../selftests/sched_ext/dsp_local_on.c | 58 + .../sched_ext/enq_last_no_enq_fails.bpf.c | 21 + .../sched_ext/enq_last_no_enq_fails.c | 60 + .../sched_ext/enq_select_cpu_fails.bpf.c | 43 + .../sched_ext/enq_select_cpu_fails.c | 61 + tools/testing/selftests/sched_ext/exit.bpf.c | 84 + tools/testing/selftests/sched_ext/exit.c | 55 + tools/testing/selftests/sched_ext/exit_test.h | 20 + .../testing/selftests/sched_ext/hotplug.bpf.c | 61 + tools/testing/selftests/sched_ext/hotplug.c | 168 + .../selftests/sched_ext/hotplug_test.h | 15 + .../sched_ext/init_enable_count.bpf.c | 53 + .../selftests/sched_ext/init_enable_count.c | 166 + .../testing/selftests/sched_ext/maximal.bpf.c | 132 + tools/testing/selftests/sched_ext/maximal.c | 51 + .../selftests/sched_ext/maybe_null.bpf.c | 36 + .../testing/selftests/sched_ext/maybe_null.c | 49 + .../sched_ext/maybe_null_fail_dsp.bpf.c | 25 + .../sched_ext/maybe_null_fail_yld.bpf.c | 28 + .../testing/selftests/sched_ext/minimal.bpf.c | 21 + tools/testing/selftests/sched_ext/minimal.c | 58 + .../selftests/sched_ext/prog_run.bpf.c | 33 + tools/testing/selftests/sched_ext/prog_run.c | 78 + .../testing/selftests/sched_ext/reload_loop.c | 75 + tools/testing/selftests/sched_ext/runner.c | 201 + tools/testing/selftests/sched_ext/scx_test.h | 131 + .../selftests/sched_ext/select_cpu_dfl.bpf.c | 40 + .../selftests/sched_ext/select_cpu_dfl.c | 72 + .../sched_ext/select_cpu_dfl_nodispatch.bpf.c | 89 + .../sched_ext/select_cpu_dfl_nodispatch.c | 72 + .../sched_ext/select_cpu_dispatch.bpf.c | 41 + .../selftests/sched_ext/select_cpu_dispatch.c | 70 + .../select_cpu_dispatch_bad_dsq.bpf.c | 37 + .../sched_ext/select_cpu_dispatch_bad_dsq.c | 56 + .../select_cpu_dispatch_dbl_dsp.bpf.c | 38 + .../sched_ext/select_cpu_dispatch_dbl_dsp.c | 56 + .../sched_ext/select_cpu_vtime.bpf.c | 92 + .../selftests/sched_ext/select_cpu_vtime.c | 59 + .../selftests/sched_ext/test_example.c | 49 + tools/testing/selftests/sched_ext/util.c | 71 + tools/testing/selftests/sched_ext/util.h | 13 + 92 files changed, 13845 insertions(+), 104 deletions(-) create mode 100644 Documentation/scheduler/sched-ext.rst create mode 100644 include/linux/sched/ext.h create mode 100644 include/trace/events/sched_ext.h create mode 100644 kernel/sched/ext.c create mode 100644 kernel/sched/ext.h create mode 100644 tools/sched_ext/.gitignore create mode 100644 tools/sched_ext/Makefile create mode 100644 tools/sched_ext/README.md create mode 100644 tools/sched_ext/include/bpf-compat/gnu/stubs.h create mode 100644 tools/sched_ext/include/scx/common.bpf.h create mode 100644 tools/sched_ext/include/scx/common.h create mode 100644 tools/sched_ext/include/scx/compat.bpf.h create mode 100644 tools/sched_ext/include/scx/compat.h create mode 100644 tools/sched_ext/include/scx/user_exit_info.h create mode 100644 tools/sched_ext/scx_central.bpf.c create mode 100644 tools/sched_ext/scx_central.c create mode 100644 tools/sched_ext/scx_qmap.bpf.c create mode 100644 tools/sched_ext/scx_qmap.c create mode 100644 tools/sched_ext/scx_show_state.py create mode 100644 tools/sched_ext/scx_simple.bpf.c create mode 100644 tools/sched_ext/scx_simple.c create mode 100644 tools/testing/selftests/sched_ext/.gitignore create mode 100644 tools/testing/selftests/sched_ext/Makefile create mode 100644 tools/testing/selftests/sched_ext/config create mode 100644 tools/testing/selftests/sched_ext/create_dsq.bpf.c create mode 100644 tools/testing/selftests/sched_ext/create_dsq.c create mode 100644 tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.bpf.c create mode 100644 tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.c create mode 100644 tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.bpf.c create mode 100644 tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.c create mode 100644 tools/testing/selftests/sched_ext/dsp_local_on.bpf.c create mode 100644 tools/testing/selftests/sched_ext/dsp_local_on.c create mode 100644 tools/testing/selftests/sched_ext/enq_last_no_enq_fails.bpf.c create mode 100644 tools/testing/selftests/sched_ext/enq_last_no_enq_fails.c create mode 100644 tools/testing/selftests/sched_ext/enq_select_cpu_fails.bpf.c create mode 100644 tools/testing/selftests/sched_ext/enq_select_cpu_fails.c create mode 100644 tools/testing/selftests/sched_ext/exit.bpf.c create mode 100644 tools/testing/selftests/sched_ext/exit.c create mode 100644 tools/testing/selftests/sched_ext/exit_test.h create mode 100644 tools/testing/selftests/sched_ext/hotplug.bpf.c create mode 100644 tools/testing/selftests/sched_ext/hotplug.c create mode 100644 tools/testing/selftests/sched_ext/hotplug_test.h create mode 100644 tools/testing/selftests/sched_ext/init_enable_count.bpf.c create mode 100644 tools/testing/selftests/sched_ext/init_enable_count.c create mode 100644 tools/testing/selftests/sched_ext/maximal.bpf.c create mode 100644 tools/testing/selftests/sched_ext/maximal.c create mode 100644 tools/testing/selftests/sched_ext/maybe_null.bpf.c create mode 100644 tools/testing/selftests/sched_ext/maybe_null.c create mode 100644 tools/testing/selftests/sched_ext/maybe_null_fail_dsp.bpf.c create mode 100644 tools/testing/selftests/sched_ext/maybe_null_fail_yld.bpf.c create mode 100644 tools/testing/selftests/sched_ext/minimal.bpf.c create mode 100644 tools/testing/selftests/sched_ext/minimal.c create mode 100644 tools/testing/selftests/sched_ext/prog_run.bpf.c create mode 100644 tools/testing/selftests/sched_ext/prog_run.c create mode 100644 tools/testing/selftests/sched_ext/reload_loop.c create mode 100644 tools/testing/selftests/sched_ext/runner.c create mode 100644 tools/testing/selftests/sched_ext/scx_test.h create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dfl.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dfl.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_vtime.bpf.c create mode 100644 tools/testing/selftests/sched_ext/select_cpu_vtime.c create mode 100644 tools/testing/selftests/sched_ext/test_example.c create mode 100644 tools/testing/selftests/sched_ext/util.c create mode 100644 tools/testing/selftests/sched_ext/util.h diff --git a/Documentation/scheduler/index.rst b/Documentation/scheduler/index.rst index 43bd8a145b7a..0611dc3dda8e 100644 --- a/Documentation/scheduler/index.rst +++ b/Documentation/scheduler/index.rst @@ -20,6 +20,7 @@ Scheduler sched-nice-design sched-rt-group sched-stats + sched-ext sched-debug text_files diff --git a/Documentation/scheduler/sched-ext.rst b/Documentation/scheduler/sched-ext.rst new file mode 100644 index 000000000000..a707d2181a77 --- /dev/null +++ b/Documentation/scheduler/sched-ext.rst @@ -0,0 +1,316 @@ +========================== +Extensible Scheduler Class +========================== + +sched_ext is a scheduler class whose behavior can be defined by a set of BPF +programs - the BPF scheduler. + +* sched_ext exports a full scheduling interface so that any scheduling + algorithm can be implemented on top. + +* The BPF scheduler can group CPUs however it sees fit and schedule them + together, as tasks aren't tied to specific CPUs at the time of wakeup. + +* The BPF scheduler can be turned on and off dynamically anytime. + +* The system integrity is maintained no matter what the BPF scheduler does. + The default scheduling behavior is restored anytime an error is detected, + a runnable task stalls, or on invoking the SysRq key sequence + :kbd:`SysRq-S`. + +* When the BPF scheduler triggers an error, debug information is dumped to + aid debugging. The debug dump is passed to and printed out by the + scheduler binary. The debug dump can also be accessed through the + `sched_ext_dump` tracepoint. The SysRq key sequence :kbd:`SysRq-D` + triggers a debug dump. This doesn't terminate the BPF scheduler and can + only be read through the tracepoint. + +Switching to and from sched_ext +=============================== + +``CONFIG_SCHED_CLASS_EXT`` is the config option to enable sched_ext and +``tools/sched_ext`` contains the example schedulers. The following config +options should be enabled to use sched_ext: + +.. code-block:: none + + CONFIG_BPF=y + CONFIG_SCHED_CLASS_EXT=y + CONFIG_BPF_SYSCALL=y + CONFIG_BPF_JIT=y + CONFIG_DEBUG_INFO_BTF=y + CONFIG_BPF_JIT_ALWAYS_ON=y + CONFIG_BPF_JIT_DEFAULT_ON=y + CONFIG_PAHOLE_HAS_SPLIT_BTF=y + CONFIG_PAHOLE_HAS_BTF_TAG=y + +sched_ext is used only when the BPF scheduler is loaded and running. + +If a task explicitly sets its scheduling policy to ``SCHED_EXT``, it will be +treated as ``SCHED_NORMAL`` and scheduled by CFS until the BPF scheduler is +loaded. + +When the BPF scheduler is loaded and ``SCX_OPS_SWITCH_PARTIAL`` is not set +in ``ops->flags``, all ``SCHED_NORMAL``, ``SCHED_BATCH``, ``SCHED_IDLE``, and +``SCHED_EXT`` tasks are scheduled by sched_ext. + +However, when the BPF scheduler is loaded and ``SCX_OPS_SWITCH_PARTIAL`` is +set in ``ops->flags``, only tasks with the ``SCHED_EXT`` policy are scheduled +by sched_ext, while tasks with ``SCHED_NORMAL``, ``SCHED_BATCH`` and +``SCHED_IDLE`` policies are scheduled by CFS. + +Terminating the sched_ext scheduler program, triggering :kbd:`SysRq-S`, or +detection of any internal error including stalled runnable tasks aborts the +BPF scheduler and reverts all tasks back to CFS. + +.. code-block:: none + + # make -j16 -C tools/sched_ext + # tools/sched_ext/scx_simple + local=0 global=3 + local=5 global=24 + local=9 global=44 + local=13 global=56 + local=17 global=72 + ^CEXIT: BPF scheduler unregistered + +The current status of the BPF scheduler can be determined as follows: + +.. code-block:: none + + # cat /sys/kernel/sched_ext/state + enabled + # cat /sys/kernel/sched_ext/root/ops + simple + +``tools/sched_ext/scx_show_state.py`` is a drgn script which shows more +detailed information: + +.. code-block:: none + + # tools/sched_ext/scx_show_state.py + ops : simple + enabled : 1 + switching_all : 1 + switched_all : 1 + enable_state : enabled (2) + bypass_depth : 0 + nr_rejected : 0 + +If ``CONFIG_SCHED_DEBUG`` is set, whether a given task is on sched_ext can +be determined as follows: + +.. code-block:: none + + # grep ext /proc/self/sched + ext.enabled : 1 + +The Basics +========== + +Userspace can implement an arbitrary BPF scheduler by loading a set of BPF +programs that implement ``struct sched_ext_ops``. The only mandatory field +is ``ops.name`` which must be a valid BPF object name. All operations are +optional. The following modified excerpt is from +``tools/sched_ext/scx_simple.bpf.c`` showing a minimal global FIFO scheduler. + +.. code-block:: c + + /* + * Decide which CPU a task should be migrated to before being + * enqueued (either at wakeup, fork time, or exec time). If an + * idle core is found by the default ops.select_cpu() implementation, + * then dispatch the task directly to SCX_DSQ_LOCAL and skip the + * ops.enqueue() callback. + * + * Note that this implementation has exactly the same behavior as the + * default ops.select_cpu implementation. The behavior of the scheduler + * would be exactly same if the implementation just didn't define the + * simple_select_cpu() struct_ops prog. + */ + s32 BPF_STRUCT_OPS(simple_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) + { + s32 cpu; + /* Need to initialize or the BPF verifier will reject the program */ + bool direct = false; + + cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &direct); + + if (direct) + scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0); + + return cpu; + } + + /* + * Do a direct dispatch of a task to the global DSQ. This ops.enqueue() + * callback will only be invoked if we failed to find a core to dispatch + * to in ops.select_cpu() above. + * + * Note that this implementation has exactly the same behavior as the + * default ops.enqueue implementation, which just dispatches the task + * to SCX_DSQ_GLOBAL. The behavior of the scheduler would be exactly same + * if the implementation just didn't define the simple_enqueue struct_ops + * prog. + */ + void BPF_STRUCT_OPS(simple_enqueue, struct task_struct *p, u64 enq_flags) + { + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); + } + + s32 BPF_STRUCT_OPS_SLEEPABLE(simple_init) + { + /* + * By default, all SCHED_EXT, SCHED_OTHER, SCHED_IDLE, and + * SCHED_BATCH tasks should use sched_ext. + */ + return 0; + } + + void BPF_STRUCT_OPS(simple_exit, struct scx_exit_info *ei) + { + exit_type = ei->type; + } + + SEC(".struct_ops") + struct sched_ext_ops simple_ops = { + .select_cpu = (void *)simple_select_cpu, + .enqueue = (void *)simple_enqueue, + .init = (void *)simple_init, + .exit = (void *)simple_exit, + .name = "simple", + }; + +Dispatch Queues +--------------- + +To match the impedance between the scheduler core and the BPF scheduler, +sched_ext uses DSQs (dispatch queues) which can operate as both a FIFO and a +priority queue. By default, there is one global FIFO (``SCX_DSQ_GLOBAL``), +and one local dsq per CPU (``SCX_DSQ_LOCAL``). The BPF scheduler can manage +an arbitrary number of dsq's using ``scx_bpf_create_dsq()`` and +``scx_bpf_destroy_dsq()``. + +A CPU always executes a task from its local DSQ. A task is "dispatched" to a +DSQ. A non-local DSQ is "consumed" to transfer a task to the consuming CPU's +local DSQ. + +When a CPU is looking for the next task to run, if the local DSQ is not +empty, the first task is picked. Otherwise, the CPU tries to consume the +global DSQ. If that doesn't yield a runnable task either, ``ops.dispatch()`` +is invoked. + +Scheduling Cycle +---------------- + +The following briefly shows how a waking task is scheduled and executed. + +1. When a task is waking up, ``ops.select_cpu()`` is the first operation + invoked. This serves two purposes. First, CPU selection optimization + hint. Second, waking up the selected CPU if idle. + + The CPU selected by ``ops.select_cpu()`` is an optimization hint and not + binding. The actual decision is made at the last step of scheduling. + However, there is a small performance gain if the CPU + ``ops.select_cpu()`` returns matches the CPU the task eventually runs on. + + A side-effect of selecting a CPU is waking it up from idle. While a BPF + scheduler can wake up any cpu using the ``scx_bpf_kick_cpu()`` helper, + using ``ops.select_cpu()`` judiciously can be simpler and more efficient. + + A task can be immediately dispatched to a DSQ from ``ops.select_cpu()`` by + calling ``scx_bpf_dispatch()``. If the task is dispatched to + ``SCX_DSQ_LOCAL`` from ``ops.select_cpu()``, it will be dispatched to the + local DSQ of whichever CPU is returned from ``ops.select_cpu()``. + Additionally, dispatching directly from ``ops.select_cpu()`` will cause the + ``ops.enqueue()`` callback to be skipped. + + Note that the scheduler core will ignore an invalid CPU selection, for + example, if it's outside the allowed cpumask of the task. + +2. Once the target CPU is selected, ``ops.enqueue()`` is invoked (unless the + task was dispatched directly from ``ops.select_cpu()``). ``ops.enqueue()`` + can make one of the following decisions: + + * Immediately dispatch the task to either the global or local DSQ by + calling ``scx_bpf_dispatch()`` with ``SCX_DSQ_GLOBAL`` or + ``SCX_DSQ_LOCAL``, respectively. + + * Immediately dispatch the task to a custom DSQ by calling + ``scx_bpf_dispatch()`` with a DSQ ID which is smaller than 2^63. + + * Queue the task on the BPF side. + +3. When a CPU is ready to schedule, it first looks at its local DSQ. If + empty, it then looks at the global DSQ. If there still isn't a task to + run, ``ops.dispatch()`` is invoked which can use the following two + functions to populate the local DSQ. + + * ``scx_bpf_dispatch()`` dispatches a task to a DSQ. Any target DSQ can + be used - ``SCX_DSQ_LOCAL``, ``SCX_DSQ_LOCAL_ON | cpu``, + ``SCX_DSQ_GLOBAL`` or a custom DSQ. While ``scx_bpf_dispatch()`` + currently can't be called with BPF locks held, this is being worked on + and will be supported. ``scx_bpf_dispatch()`` schedules dispatching + rather than performing them immediately. There can be up to + ``ops.dispatch_max_batch`` pending tasks. + + * ``scx_bpf_consume()`` tranfers a task from the specified non-local DSQ + to the dispatching DSQ. This function cannot be called with any BPF + locks held. ``scx_bpf_consume()`` flushes the pending dispatched tasks + before trying to consume the specified DSQ. + +4. After ``ops.dispatch()`` returns, if there are tasks in the local DSQ, + the CPU runs the first one. If empty, the following steps are taken: + + * Try to consume the global DSQ. If successful, run the task. + + * If ``ops.dispatch()`` has dispatched any tasks, retry #3. + + * If the previous task is an SCX task and still runnable, keep executing + it (see ``SCX_OPS_ENQ_LAST``). + + * Go idle. + +Note that the BPF scheduler can always choose to dispatch tasks immediately +in ``ops.enqueue()`` as illustrated in the above simple example. If only the +built-in DSQs are used, there is no need to implement ``ops.dispatch()`` as +a task is never queued on the BPF scheduler and both the local and global +DSQs are consumed automatically. + +``scx_bpf_dispatch()`` queues the task on the FIFO of the target DSQ. Use +``scx_bpf_dispatch_vtime()`` for the priority queue. Internal DSQs such as +``SCX_DSQ_LOCAL`` and ``SCX_DSQ_GLOBAL`` do not support priority-queue +dispatching, and must be dispatched to with ``scx_bpf_dispatch()``. See the +function documentation and usage in ``tools/sched_ext/scx_simple.bpf.c`` for +more information. + +Where to Look +============= + +* ``include/linux/sched/ext.h`` defines the core data structures, ops table + and constants. + +* ``kernel/sched/ext.c`` contains sched_ext core implementation and helpers. + The functions prefixed with ``scx_bpf_`` can be called from the BPF + scheduler. + +* ``tools/sched_ext/`` hosts example BPF scheduler implementations. + + * ``scx_simple[.bpf].c``: Minimal global FIFO scheduler example using a + custom DSQ. + + * ``scx_qmap[.bpf].c``: A multi-level FIFO scheduler supporting five + levels of priority implemented with ``BPF_MAP_TYPE_QUEUE``. + +ABI Instability +=============== + +The APIs provided by sched_ext to BPF schedulers programs have no stability +guarantees. This includes the ops table callbacks and constants defined in +``include/linux/sched/ext.h``, as well as the ``scx_bpf_`` kfuncs defined in +``kernel/sched/ext.c``. + +While we will attempt to provide a relatively stable API surface when +possible, they are subject to change without warning between kernel +versions. diff --git a/MAINTAINERS b/MAINTAINERS index 064156d69e75..78815a193485 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -19945,6 +19945,19 @@ F: include/linux/wait.h F: include/uapi/linux/sched.h F: kernel/sched/ +SCHEDULER - SCHED_EXT +R: Tejun Heo +R: David Vernet +L: linux-kernel@vger.kernel.org +S: Maintained +W: https://github.com/sched-ext/scx +T: git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext.git +F: include/linux/sched/ext.h +F: kernel/sched/ext.h +F: kernel/sched/ext.c +F: tools/sched_ext/ +F: tools/testing/selftests/sched_ext + SCSI LIBSAS SUBSYSTEM R: John Garry R: Jason Yan diff --git a/drivers/tty/sysrq.c b/drivers/tty/sysrq.c index e5974b8239c9..167e877b8bef 100644 --- a/drivers/tty/sysrq.c +++ b/drivers/tty/sysrq.c @@ -531,6 +531,7 @@ static const struct sysrq_key_op *sysrq_key_table[62] = { NULL, /* P */ NULL, /* Q */ &sysrq_replay_logs_op, /* R */ + /* S: May be registered by sched_ext for resetting */ NULL, /* S */ NULL, /* T */ NULL, /* U */ diff --git a/include/asm-generic/vmlinux.lds.h b/include/asm-generic/vmlinux.lds.h index 70bf1004076b..a8417d31e348 100644 --- a/include/asm-generic/vmlinux.lds.h +++ b/include/asm-generic/vmlinux.lds.h @@ -133,6 +133,7 @@ *(__dl_sched_class) \ *(__rt_sched_class) \ *(__fair_sched_class) \ + *(__ext_sched_class) \ *(__idle_sched_class) \ __sched_class_lowest = .; diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h index 2150ca60394b..3cdaec701600 100644 --- a/include/linux/cgroup.h +++ b/include/linux/cgroup.h @@ -29,8 +29,6 @@ struct kernel_clone_args; -#ifdef CONFIG_CGROUPS - /* * All weight knobs on the default hierarchy should use the following min, * default and max values. The default value is the logarithmic center of @@ -40,6 +38,8 @@ struct kernel_clone_args; #define CGROUP_WEIGHT_DFL 100 #define CGROUP_WEIGHT_MAX 10000 +#ifdef CONFIG_CGROUPS + enum { CSS_TASK_ITER_PROCS = (1U << 0), /* walk only threadgroup leaders */ CSS_TASK_ITER_THREADED = (1U << 1), /* walk all threaded css_sets in the domain */ diff --git a/include/linux/sched.h b/include/linux/sched.h index 76214d7c819d..0f3a107bcd02 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -80,6 +80,8 @@ struct task_group; struct task_struct; struct user_event_mm; +#include + /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). @@ -802,6 +804,9 @@ struct task_struct { struct sched_rt_entity rt; struct sched_dl_entity dl; struct sched_dl_entity *dl_server; +#ifdef CONFIG_SCHED_CLASS_EXT + struct sched_ext_entity scx; +#endif const struct sched_class *sched_class; #ifdef CONFIG_SCHED_CORE diff --git a/include/linux/sched/ext.h b/include/linux/sched/ext.h new file mode 100644 index 000000000000..26e1c33bc844 --- /dev/null +++ b/include/linux/sched/ext.h @@ -0,0 +1,204 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#ifndef _LINUX_SCHED_EXT_H +#define _LINUX_SCHED_EXT_H + +#ifdef CONFIG_SCHED_CLASS_EXT + +#include +#include + +enum scx_public_consts { + SCX_OPS_NAME_LEN = 128, + + SCX_SLICE_DFL = 20 * 1000000, /* 20ms */ + SCX_SLICE_INF = U64_MAX, /* infinite, implies nohz */ +}; + +/* + * DSQ (dispatch queue) IDs are 64bit of the format: + * + * Bits: [63] [62 .. 0] + * [ B] [ ID ] + * + * B: 1 for IDs for built-in DSQs, 0 for ops-created user DSQs + * ID: 63 bit ID + * + * Built-in IDs: + * + * Bits: [63] [62] [61..32] [31 .. 0] + * [ 1] [ L] [ R ] [ V ] + * + * 1: 1 for built-in DSQs. + * L: 1 for LOCAL_ON DSQ IDs, 0 for others + * V: For LOCAL_ON DSQ IDs, a CPU number. For others, a pre-defined value. + */ +enum scx_dsq_id_flags { + SCX_DSQ_FLAG_BUILTIN = 1LLU << 63, + SCX_DSQ_FLAG_LOCAL_ON = 1LLU << 62, + + SCX_DSQ_INVALID = SCX_DSQ_FLAG_BUILTIN | 0, + SCX_DSQ_GLOBAL = SCX_DSQ_FLAG_BUILTIN | 1, + SCX_DSQ_LOCAL = SCX_DSQ_FLAG_BUILTIN | 2, + SCX_DSQ_LOCAL_ON = SCX_DSQ_FLAG_BUILTIN | SCX_DSQ_FLAG_LOCAL_ON, + SCX_DSQ_LOCAL_CPU_MASK = 0xffffffffLLU, +}; + +/* + * A dispatch queue (DSQ) can be either a FIFO or p->scx.dsq_vtime ordered + * queue. A built-in DSQ is always a FIFO. The built-in local DSQs are used to + * buffer between the scheduler core and the BPF scheduler. See the + * documentation for more details. + */ +struct scx_dispatch_q { + raw_spinlock_t lock; + struct list_head list; /* tasks in dispatch order */ + struct rb_root priq; /* used to order by p->scx.dsq_vtime */ + u32 nr; + u32 seq; /* used by BPF iter */ + u64 id; + struct rhash_head hash_node; + struct llist_node free_node; + struct rcu_head rcu; +}; + +/* scx_entity.flags */ +enum scx_ent_flags { + SCX_TASK_QUEUED = 1 << 0, /* on ext runqueue */ + SCX_TASK_BAL_KEEP = 1 << 1, /* balance decided to keep current */ + SCX_TASK_RESET_RUNNABLE_AT = 1 << 2, /* runnable_at should be reset */ + SCX_TASK_DEQD_FOR_SLEEP = 1 << 3, /* last dequeue was for SLEEP */ + + SCX_TASK_STATE_SHIFT = 8, /* bit 8 and 9 are used to carry scx_task_state */ + SCX_TASK_STATE_BITS = 2, + SCX_TASK_STATE_MASK = ((1 << SCX_TASK_STATE_BITS) - 1) << SCX_TASK_STATE_SHIFT, + + SCX_TASK_CURSOR = 1 << 31, /* iteration cursor, not a task */ +}; + +/* scx_entity.flags & SCX_TASK_STATE_MASK */ +enum scx_task_state { + SCX_TASK_NONE, /* ops.init_task() not called yet */ + SCX_TASK_INIT, /* ops.init_task() succeeded, but task can be cancelled */ + SCX_TASK_READY, /* fully initialized, but not in sched_ext */ + SCX_TASK_ENABLED, /* fully initialized and in sched_ext */ + + SCX_TASK_NR_STATES, +}; + +/* scx_entity.dsq_flags */ +enum scx_ent_dsq_flags { + SCX_TASK_DSQ_ON_PRIQ = 1 << 0, /* task is queued on the priority queue of a dsq */ +}; + +/* + * Mask bits for scx_entity.kf_mask. Not all kfuncs can be called from + * everywhere and the following bits track which kfunc sets are currently + * allowed for %current. This simple per-task tracking works because SCX ops + * nest in a limited way. BPF will likely implement a way to allow and disallow + * kfuncs depending on the calling context which will replace this manual + * mechanism. See scx_kf_allow(). + */ +enum scx_kf_mask { + SCX_KF_UNLOCKED = 0, /* sleepable and not rq locked */ + /* ENQUEUE and DISPATCH may be nested inside CPU_RELEASE */ + SCX_KF_CPU_RELEASE = 1 << 0, /* ops.cpu_release() */ + /* ops.dequeue (in REST) may be nested inside DISPATCH */ + SCX_KF_DISPATCH = 1 << 1, /* ops.dispatch() */ + SCX_KF_ENQUEUE = 1 << 2, /* ops.enqueue() and ops.select_cpu() */ + SCX_KF_SELECT_CPU = 1 << 3, /* ops.select_cpu() */ + SCX_KF_REST = 1 << 4, /* other rq-locked operations */ + + __SCX_KF_RQ_LOCKED = SCX_KF_CPU_RELEASE | SCX_KF_DISPATCH | + SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU | SCX_KF_REST, + __SCX_KF_TERMINAL = SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU | SCX_KF_REST, +}; + +struct scx_dsq_list_node { + struct list_head node; + bool is_bpf_iter_cursor; +}; + +/* + * The following is embedded in task_struct and contains all fields necessary + * for a task to be scheduled by SCX. + */ +struct sched_ext_entity { + struct scx_dispatch_q *dsq; + struct scx_dsq_list_node dsq_list; /* dispatch order */ + struct rb_node dsq_priq; /* p->scx.dsq_vtime order */ + u32 dsq_seq; + u32 dsq_flags; /* protected by DSQ lock */ + u32 flags; /* protected by rq lock */ + u32 weight; + s32 sticky_cpu; + s32 holding_cpu; + u32 kf_mask; /* see scx_kf_mask above */ + struct task_struct *kf_tasks[2]; /* see SCX_CALL_OP_TASK() */ + atomic_long_t ops_state; + + struct list_head runnable_node; /* rq->scx.runnable_list */ + unsigned long runnable_at; + +#ifdef CONFIG_SCHED_CORE + u64 core_sched_at; /* see scx_prio_less() */ +#endif + u64 ddsp_dsq_id; + u64 ddsp_enq_flags; + + /* BPF scheduler modifiable fields */ + + /* + * Runtime budget in nsecs. This is usually set through + * scx_bpf_dispatch() but can also be modified directly by the BPF + * scheduler. Automatically decreased by SCX as the task executes. On + * depletion, a scheduling event is triggered. + * + * This value is cleared to zero if the task is preempted by + * %SCX_KICK_PREEMPT and shouldn't be used to determine how long the + * task ran. Use p->se.sum_exec_runtime instead. + */ + u64 slice; + + /* + * Used to order tasks when dispatching to the vtime-ordered priority + * queue of a dsq. This is usually set through scx_bpf_dispatch_vtime() + * but can also be modified directly by the BPF scheduler. Modifying it + * while a task is queued on a dsq may mangle the ordering and is not + * recommended. + */ + u64 dsq_vtime; + + /* + * If set, reject future sched_setscheduler(2) calls updating the policy + * to %SCHED_EXT with -%EACCES. + * + * If set from ops.init_task() and the task's policy is already + * %SCHED_EXT, which can happen while the BPF scheduler is being loaded + * or by inhering the parent's policy during fork, the task's policy is + * rejected and forcefully reverted to %SCHED_NORMAL. The number of + * such events are reported through /sys/kernel/debug/sched_ext::nr_rejected. + */ + bool disallow; /* reject switching into SCX */ + + /* cold fields */ + /* must be the last field, see init_scx_entity() */ + struct list_head tasks_node; +}; + +void sched_ext_free(struct task_struct *p); +void print_scx_info(const char *log_lvl, struct task_struct *p); + +#else /* !CONFIG_SCHED_CLASS_EXT */ + +static inline void sched_ext_free(struct task_struct *p) {} +static inline void print_scx_info(const char *log_lvl, struct task_struct *p) {} + +#endif /* CONFIG_SCHED_CLASS_EXT */ +#endif /* _LINUX_SCHED_EXT_H */ diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h index d362aacf9f89..4df2f9055587 100644 --- a/include/linux/sched/task.h +++ b/include/linux/sched/task.h @@ -63,7 +63,8 @@ extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); -extern void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs); +extern int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs); +extern void sched_cancel_fork(struct task_struct *p); extern void sched_post_fork(struct task_struct *p); extern void sched_dead(struct task_struct *p); diff --git a/include/trace/events/sched_ext.h b/include/trace/events/sched_ext.h new file mode 100644 index 000000000000..fe19da7315a9 --- /dev/null +++ b/include/trace/events/sched_ext.h @@ -0,0 +1,32 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#undef TRACE_SYSTEM +#define TRACE_SYSTEM sched_ext + +#if !defined(_TRACE_SCHED_EXT_H) || defined(TRACE_HEADER_MULTI_READ) +#define _TRACE_SCHED_EXT_H + +#include + +TRACE_EVENT(sched_ext_dump, + + TP_PROTO(const char *line), + + TP_ARGS(line), + + TP_STRUCT__entry( + __string(line, line) + ), + + TP_fast_assign( + __assign_str(line); + ), + + TP_printk("%s", + __get_str(line) + ) +); + +#endif /* _TRACE_SCHED_EXT_H */ + +/* This part must be outside protection */ +#include diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h index 3bac0a8ceab2..359a14cc76a4 100644 --- a/include/uapi/linux/sched.h +++ b/include/uapi/linux/sched.h @@ -118,6 +118,7 @@ struct clone_args { /* SCHED_ISO: reserved but not implemented yet */ #define SCHED_IDLE 5 #define SCHED_DEADLINE 6 +#define SCHED_EXT 7 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ #define SCHED_RESET_ON_FORK 0x40000000 diff --git a/init/init_task.c b/init/init_task.c index eeb110c65fe2..e222722e790b 100644 --- a/init/init_task.c +++ b/init/init_task.c @@ -6,6 +6,7 @@ #include #include #include +#include #include #include #include @@ -98,6 +99,17 @@ struct task_struct init_task __aligned(L1_CACHE_BYTES) = { #endif #ifdef CONFIG_CGROUP_SCHED .sched_task_group = &root_task_group, +#endif +#ifdef CONFIG_SCHED_CLASS_EXT + .scx = { + .dsq_list.node = LIST_HEAD_INIT(init_task.scx.dsq_list.node), + .sticky_cpu = -1, + .holding_cpu = -1, + .runnable_node = LIST_HEAD_INIT(init_task.scx.runnable_node), + .runnable_at = INITIAL_JIFFIES, + .ddsp_dsq_id = SCX_DSQ_INVALID, + .slice = SCX_SLICE_DFL, + }, #endif .ptraced = LIST_HEAD_INIT(init_task.ptraced), .ptrace_entry = LIST_HEAD_INIT(init_task.ptrace_entry), diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt index c2f1fd95a821..f3d140c3acc1 100644 --- a/kernel/Kconfig.preempt +++ b/kernel/Kconfig.preempt @@ -133,4 +133,28 @@ config SCHED_CORE which is the likely usage by Linux distributions, there should be no measurable impact on performance. - +config SCHED_CLASS_EXT + bool "Extensible Scheduling Class" + depends on BPF_SYSCALL && BPF_JIT && DEBUG_INFO_BTF + help + This option enables a new scheduler class sched_ext (SCX), which + allows scheduling policies to be implemented as BPF programs to + achieve the following: + + - Ease of experimentation and exploration: Enabling rapid + iteration of new scheduling policies. + - Customization: Building application-specific schedulers which + implement policies that are not applicable to general-purpose + schedulers. + - Rapid scheduler deployments: Non-disruptive swap outs of + scheduling policies in production environments. + + sched_ext leverages BPF struct_ops feature to define a structure + which exports function callbacks and flags to BPF programs that + wish to implement scheduling policies. The struct_ops structure + exported by sched_ext is struct sched_ext_ops, and is conceptually + similar to struct sched_class. + + For more information: + Documentation/scheduler/sched-ext.rst + https://github.com/sched-ext/scx diff --git a/kernel/fork.c b/kernel/fork.c index 18750b83c564..d973d23b3768 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -23,6 +23,7 @@ #include #include #include +#include #include #include #include @@ -975,6 +976,7 @@ void __put_task_struct(struct task_struct *tsk) WARN_ON(refcount_read(&tsk->usage)); WARN_ON(tsk == current); + sched_ext_free(tsk); io_uring_free(tsk); cgroup_free(tsk); task_numa_free(tsk, true); @@ -2371,7 +2373,7 @@ __latent_entropy struct task_struct *copy_process( retval = perf_event_init_task(p, clone_flags); if (retval) - goto bad_fork_cleanup_policy; + goto bad_fork_sched_cancel_fork; retval = audit_alloc(p); if (retval) goto bad_fork_cleanup_perf; @@ -2504,7 +2506,9 @@ __latent_entropy struct task_struct *copy_process( * cgroup specific, it unconditionally needs to place the task on a * runqueue. */ - sched_cgroup_fork(p, args); + retval = sched_cgroup_fork(p, args); + if (retval) + goto bad_fork_cancel_cgroup; /* * From this point on we must avoid any synchronous user-space @@ -2550,13 +2554,13 @@ __latent_entropy struct task_struct *copy_process( /* Don't start children in a dying pid namespace */ if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { retval = -ENOMEM; - goto bad_fork_cancel_cgroup; + goto bad_fork_core_free; } /* Let kill terminate clone/fork in the middle */ if (fatal_signal_pending(current)) { retval = -EINTR; - goto bad_fork_cancel_cgroup; + goto bad_fork_core_free; } /* No more failure paths after this point. */ @@ -2630,10 +2634,11 @@ __latent_entropy struct task_struct *copy_process( return p; -bad_fork_cancel_cgroup: +bad_fork_core_free: sched_core_free(p); spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); +bad_fork_cancel_cgroup: cgroup_cancel_fork(p, args); bad_fork_put_pidfd: if (clone_flags & CLONE_PIDFD) { @@ -2672,6 +2677,8 @@ __latent_entropy struct task_struct *copy_process( audit_free(p); bad_fork_cleanup_perf: perf_event_free_task(p); +bad_fork_sched_cancel_fork: + sched_cancel_fork(p); bad_fork_cleanup_policy: lockdep_free_task(p); #ifdef CONFIG_NUMA diff --git a/kernel/sched/build_policy.c b/kernel/sched/build_policy.c index d9dc9ab3773f..e7d539bb721e 100644 --- a/kernel/sched/build_policy.c +++ b/kernel/sched/build_policy.c @@ -16,18 +16,25 @@ #include #include #include +#include #include #include #include #include +#include #include +#include #include +#include +#include #include #include #include #include #include +#include +#include #include @@ -52,3 +59,6 @@ #include "cputime.c" #include "deadline.c" +#ifdef CONFIG_SCHED_CLASS_EXT +# include "ext.c" +#endif diff --git a/kernel/sched/core.c b/kernel/sched/core.c index ebf21373f663..fb6276f74ee6 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -168,7 +168,10 @@ static inline int __task_prio(const struct task_struct *p) if (p->sched_class == &idle_sched_class) return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ - return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */ + if (task_on_scx(p)) + return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ + + return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ } /* @@ -197,6 +200,11 @@ static inline bool prio_less(const struct task_struct *a, if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ return cfs_prio_less(a, b, in_fi); +#ifdef CONFIG_SCHED_CLASS_EXT + if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ + return scx_prio_less(a, b, in_fi); +#endif + return false; } @@ -1254,11 +1262,14 @@ bool sched_can_stop_tick(struct rq *rq) return true; /* - * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left; - * if there's more than one we need the tick for involuntary - * preemption. + * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks + * left. For CFS, if there's more than one we need the tick for + * involuntary preemption. For SCX, ask. */ - if (rq->nr_running > 1) + if (!scx_switched_all() && rq->nr_running > 1) + return false; + + if (scx_enabled() && !scx_can_stop_tick(rq)) return false; /* @@ -1340,8 +1351,8 @@ static void set_load_weight(struct task_struct *p, bool update_load) * SCHED_OTHER tasks have to update their load when changing their * weight */ - if (update_load && p->sched_class == &fair_sched_class) - reweight_task(p, &lw); + if (update_load && p->sched_class->reweight_task) + p->sched_class->reweight_task(task_rq(p), p, &lw); else p->se.load = lw; } @@ -2210,6 +2221,17 @@ inline int task_curr(const struct task_struct *p) return cpu_curr(task_cpu(p)) == p; } +/* + * ->switching_to() is called with the pi_lock and rq_lock held and must not + * mess with locking. + */ +void check_class_changing(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class) +{ + if (prev_class != p->sched_class && p->sched_class->switching_to) + p->sched_class->switching_to(rq, p); +} + /* * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, * use the balance_callback list if you want balancing. @@ -2217,9 +2239,9 @@ inline int task_curr(const struct task_struct *p) * this means any call to check_class_changed() must be followed by a call to * balance_callback(). */ -static inline void check_class_changed(struct rq *rq, struct task_struct *p, - const struct sched_class *prev_class, - int oldprio) +void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio) { if (prev_class != p->sched_class) { if (prev_class->switched_from) @@ -3982,6 +4004,15 @@ bool cpus_share_resources(int this_cpu, int that_cpu) static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) { + /* + * The BPF scheduler may depend on select_task_rq() being invoked during + * wakeups. In addition, @p may end up executing on a different CPU + * regardless of what happens in the wakeup path making the ttwu_queue + * optimization less meaningful. Skip if on SCX. + */ + if (task_on_scx(p)) + return false; + /* * Do not complicate things with the async wake_list while the CPU is * in hotplug state. @@ -4549,6 +4580,10 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->rt.on_rq = 0; p->rt.on_list = 0; +#ifdef CONFIG_SCHED_CLASS_EXT + init_scx_entity(&p->scx); +#endif + #ifdef CONFIG_PREEMPT_NOTIFIERS INIT_HLIST_HEAD(&p->preempt_notifiers); #endif @@ -4789,10 +4824,18 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) if (dl_prio(p->prio)) return -EAGAIN; - else if (rt_prio(p->prio)) + + scx_pre_fork(p); + + if (rt_prio(p->prio)) { p->sched_class = &rt_sched_class; - else +#ifdef CONFIG_SCHED_CLASS_EXT + } else if (task_should_scx(p)) { + p->sched_class = &ext_sched_class; +#endif + } else { p->sched_class = &fair_sched_class; + } init_entity_runnable_average(&p->se); @@ -4812,7 +4855,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p) return 0; } -void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) +int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) { unsigned long flags; @@ -4839,11 +4882,19 @@ void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) if (p->sched_class->task_fork) p->sched_class->task_fork(p); raw_spin_unlock_irqrestore(&p->pi_lock, flags); + + return scx_fork(p); +} + +void sched_cancel_fork(struct task_struct *p) +{ + scx_cancel_fork(p); } void sched_post_fork(struct task_struct *p) { uclamp_post_fork(p); + scx_post_fork(p); } unsigned long to_ratio(u64 period, u64 runtime) @@ -5685,6 +5736,7 @@ void sched_tick(void) calc_global_load_tick(rq); sched_core_tick(rq); task_tick_mm_cid(rq, curr); + scx_tick(rq); rq_unlock(rq, &rf); @@ -5697,8 +5749,10 @@ void sched_tick(void) wq_worker_tick(curr); #ifdef CONFIG_SMP - rq->idle_balance = idle_cpu(cpu); - sched_balance_trigger(rq); + if (!scx_switched_all()) { + rq->idle_balance = idle_cpu(cpu); + sched_balance_trigger(rq); + } #endif } @@ -5989,7 +6043,19 @@ static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) { #ifdef CONFIG_SMP + const struct sched_class *start_class = prev->sched_class; const struct sched_class *class; + +#ifdef CONFIG_SCHED_CLASS_EXT + /* + * SCX requires a balance() call before every pick_next_task() including + * when waking up from SCHED_IDLE. If @start_class is below SCX, start + * from SCX instead. + */ + if (sched_class_above(&ext_sched_class, start_class)) + start_class = &ext_sched_class; +#endif + /* * We must do the balancing pass before put_prev_task(), such * that when we release the rq->lock the task is in the same @@ -5998,7 +6064,7 @@ static void put_prev_task_balance(struct rq *rq, struct task_struct *prev, * We can terminate the balance pass as soon as we know there is * a runnable task of @class priority or higher. */ - for_class_range(class, prev->sched_class, &idle_sched_class) { + for_active_class_range(class, start_class, &idle_sched_class) { if (class->balance(rq, prev, rf)) break; } @@ -6016,6 +6082,9 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) const struct sched_class *class; struct task_struct *p; + if (scx_enabled()) + goto restart; + /* * Optimization: we know that if all tasks are in the fair class we can * call that function directly, but only if the @prev task wasn't of a @@ -6056,10 +6125,15 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) if (prev->dl_server) prev->dl_server = NULL; - for_each_class(class) { + for_each_active_class(class) { p = class->pick_next_task(rq); - if (p) + if (p) { + const struct sched_class *prev_class = prev->sched_class; + + if (class != prev_class && prev_class->switch_class) + prev_class->switch_class(rq, p); return p; + } } BUG(); /* The idle class should always have a runnable task. */ @@ -6089,7 +6163,7 @@ static inline struct task_struct *pick_task(struct rq *rq) const struct sched_class *class; struct task_struct *p; - for_each_class(class) { + for_each_active_class(class) { p = class->pick_task(rq); if (p) return p; @@ -7080,12 +7154,16 @@ int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flag } EXPORT_SYMBOL(default_wake_function); -static void __setscheduler_prio(struct task_struct *p, int prio) +void __setscheduler_prio(struct task_struct *p, int prio) { if (dl_prio(prio)) p->sched_class = &dl_sched_class; else if (rt_prio(prio)) p->sched_class = &rt_sched_class; +#ifdef CONFIG_SCHED_CLASS_EXT + else if (task_should_scx(p)) + p->sched_class = &ext_sched_class; +#endif else p->sched_class = &fair_sched_class; @@ -7246,6 +7324,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) } __setscheduler_prio(p, prio); + check_class_changing(rq, p, prev_class); if (queued) enqueue_task(rq, p, queue_flag); @@ -7467,6 +7546,25 @@ int sched_core_idle_cpu(int cpu) #endif #ifdef CONFIG_SMP +/* + * Load avg and utiliztion metrics need to be updated periodically and before + * consumption. This function updates the metrics for all subsystems except for + * the fair class. @rq must be locked and have its clock updated. + */ +bool update_other_load_avgs(struct rq *rq) +{ + u64 now = rq_clock_pelt(rq); + const struct sched_class *curr_class = rq->curr->sched_class; + unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); + + lockdep_assert_rq_held(rq); + + return update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | + update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | + update_hw_load_avg(now, rq, hw_pressure) | + update_irq_load_avg(rq, 0); +} + /* * This function computes an effective utilization for the given CPU, to be * used for frequency selection given the linear relation: f = u * f_max. @@ -7789,6 +7887,10 @@ static int __sched_setscheduler(struct task_struct *p, goto unlock; } + retval = scx_check_setscheduler(p, policy); + if (retval) + goto unlock; + /* * If not changing anything there's no need to proceed further, * but store a possible modification of reset_on_fork. @@ -7891,6 +7993,7 @@ static int __sched_setscheduler(struct task_struct *p, __setscheduler_prio(p, newprio); } __setscheduler_uclamp(p, attr); + check_class_changing(rq, p, prev_class); if (queued) { /* @@ -9066,6 +9169,7 @@ SYSCALL_DEFINE1(sched_get_priority_max, int, policy) case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: + case SCHED_EXT: ret = 0; break; } @@ -9093,6 +9197,7 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy) case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: + case SCHED_EXT: ret = 0; } return ret; @@ -9188,6 +9293,7 @@ void sched_show_task(struct task_struct *p) print_worker_info(KERN_INFO, p); print_stop_info(KERN_INFO, p); + print_scx_info(KERN_INFO, p); show_stack(p, NULL, KERN_INFO); put_task_stack(p); } @@ -9680,6 +9786,8 @@ int sched_cpu_activate(unsigned int cpu) cpuset_cpu_active(); } + scx_rq_activate(rq); + /* * Put the rq online, if not already. This happens: * @@ -9740,6 +9848,8 @@ int sched_cpu_deactivate(unsigned int cpu) } rq_unlock_irqrestore(rq, &rf); + scx_rq_deactivate(rq); + #ifdef CONFIG_SCHED_SMT /* * When going down, decrement the number of cores with SMT present. @@ -9923,11 +10033,15 @@ void __init sched_init(void) int i; /* Make sure the linker didn't screw up */ - BUG_ON(&idle_sched_class != &fair_sched_class + 1 || - &fair_sched_class != &rt_sched_class + 1 || - &rt_sched_class != &dl_sched_class + 1); #ifdef CONFIG_SMP - BUG_ON(&dl_sched_class != &stop_sched_class + 1); + BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); +#endif + BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); + BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); + BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); +#ifdef CONFIG_SCHED_CLASS_EXT + BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); + BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); #endif wait_bit_init(); @@ -10096,6 +10210,7 @@ void __init sched_init(void) balance_push_set(smp_processor_id(), false); #endif init_sched_fair_class(); + init_sched_ext_class(); psi_init(); @@ -10522,11 +10637,6 @@ void sched_move_task(struct task_struct *tsk) } } -static inline struct task_group *css_tg(struct cgroup_subsys_state *css) -{ - return css ? container_of(css, struct task_group, css) : NULL; -} - static struct cgroup_subsys_state * cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { @@ -11293,29 +11403,27 @@ static int cpu_local_stat_show(struct seq_file *sf, } #ifdef CONFIG_FAIR_GROUP_SCHED + +static unsigned long tg_weight(struct task_group *tg) +{ + return scale_load_down(tg->shares); +} + static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) { - struct task_group *tg = css_tg(css); - u64 weight = scale_load_down(tg->shares); - - return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024); + return sched_weight_to_cgroup(tg_weight(css_tg(css))); } static int cpu_weight_write_u64(struct cgroup_subsys_state *css, - struct cftype *cft, u64 weight) + struct cftype *cft, u64 cgrp_weight) { - /* - * cgroup weight knobs should use the common MIN, DFL and MAX - * values which are 1, 100 and 10000 respectively. While it loses - * a bit of range on both ends, it maps pretty well onto the shares - * value used by scheduler and the round-trip conversions preserve - * the original value over the entire range. - */ - if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX) + unsigned long weight; + + if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) return -ERANGE; - weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL); + weight = sched_weight_from_cgroup(cgrp_weight); return sched_group_set_shares(css_tg(css), scale_load(weight)); } @@ -11323,7 +11431,7 @@ static int cpu_weight_write_u64(struct cgroup_subsys_state *css, static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) { - unsigned long weight = scale_load_down(css_tg(css)->shares); + unsigned long weight = tg_weight(css_tg(css)); int last_delta = INT_MAX; int prio, delta; @@ -12064,3 +12172,38 @@ void sched_mm_cid_fork(struct task_struct *t) t->mm_cid_active = 1; } #endif + +#ifdef CONFIG_SCHED_CLASS_EXT +void sched_deq_and_put_task(struct task_struct *p, int queue_flags, + struct sched_enq_and_set_ctx *ctx) +{ + struct rq *rq = task_rq(p); + + lockdep_assert_rq_held(rq); + + *ctx = (struct sched_enq_and_set_ctx){ + .p = p, + .queue_flags = queue_flags, + .queued = task_on_rq_queued(p), + .running = task_current(rq, p), + }; + + update_rq_clock(rq); + if (ctx->queued) + dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); + if (ctx->running) + put_prev_task(rq, p); +} + +void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) +{ + struct rq *rq = task_rq(ctx->p); + + lockdep_assert_rq_held(rq); + + if (ctx->queued) + enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); + if (ctx->running) + set_next_task(rq, ctx->p); +} +#endif /* CONFIG_SCHED_CLASS_EXT */ diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c index eece6244f9d2..e683e5d08daa 100644 --- a/kernel/sched/cpufreq_schedutil.c +++ b/kernel/sched/cpufreq_schedutil.c @@ -197,8 +197,10 @@ unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost) { - unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu); + unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu); + if (!scx_switched_all()) + util += cpu_util_cfs_boost(sg_cpu->cpu); util = effective_cpu_util(sg_cpu->cpu, util, &min, &max); util = max(util, boost); sg_cpu->bw_min = min; @@ -325,16 +327,35 @@ static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time, } #ifdef CONFIG_NO_HZ_COMMON -static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) +static bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { - unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); - bool ret = idle_calls == sg_cpu->saved_idle_calls; + unsigned long idle_calls; + bool ret; + + /* + * The heuristics in this function is for the fair class. For SCX, the + * performance target comes directly from the BPF scheduler. Let's just + * follow it. + */ + if (scx_switched_all()) + return false; + + /* if capped by uclamp_max, always update to be in compliance */ + if (uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu))) + return false; + + /* + * Maintain the frequency if the CPU has not been idle recently, as + * reduction is likely to be premature. + */ + idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu); + ret = idle_calls == sg_cpu->saved_idle_calls; sg_cpu->saved_idle_calls = idle_calls; return ret; } #else -static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; } +static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; } #endif /* CONFIG_NO_HZ_COMMON */ /* @@ -382,14 +403,8 @@ static void sugov_update_single_freq(struct update_util_data *hook, u64 time, return; next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap); - /* - * Do not reduce the frequency if the CPU has not been idle - * recently, as the reduction is likely to be premature then. - * - * Except when the rq is capped by uclamp_max. - */ - if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && - sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq && + + if (sugov_hold_freq(sg_cpu) && next_f < sg_policy->next_freq && !sg_policy->need_freq_update) { next_f = sg_policy->next_freq; @@ -436,14 +451,7 @@ static void sugov_update_single_perf(struct update_util_data *hook, u64 time, if (!sugov_update_single_common(sg_cpu, time, max_cap, flags)) return; - /* - * Do not reduce the target performance level if the CPU has not been - * idle recently, as the reduction is likely to be premature then. - * - * Except when the rq is capped by uclamp_max. - */ - if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) && - sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util) + if (sugov_hold_freq(sg_cpu) && sg_cpu->util < prev_util) sg_cpu->util = prev_util; cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min, diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index c1eb9a1afd13..c057ef46c5f8 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -1090,6 +1090,9 @@ void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, P(dl.runtime); P(dl.deadline); } +#ifdef CONFIG_SCHED_CLASS_EXT + __PS("ext.enabled", task_on_scx(p)); +#endif #undef PN_SCHEDSTAT #undef P_SCHEDSTAT diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c new file mode 100644 index 000000000000..0dac88d0e578 --- /dev/null +++ b/kernel/sched/ext.c @@ -0,0 +1,6532 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) + +enum scx_consts { + SCX_DSP_DFL_MAX_BATCH = 32, + SCX_DSP_MAX_LOOPS = 32, + SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, + + SCX_EXIT_BT_LEN = 64, + SCX_EXIT_MSG_LEN = 1024, + SCX_EXIT_DUMP_DFL_LEN = 32768, + + SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, +}; + +enum scx_exit_kind { + SCX_EXIT_NONE, + SCX_EXIT_DONE, + + SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ + SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ + SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ + SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ + + SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ + SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ + SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ +}; + +/* + * An exit code can be specified when exiting with scx_bpf_exit() or + * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN + * respectively. The codes are 64bit of the format: + * + * Bits: [63 .. 48 47 .. 32 31 .. 0] + * [ SYS ACT ] [ SYS RSN ] [ USR ] + * + * SYS ACT: System-defined exit actions + * SYS RSN: System-defined exit reasons + * USR : User-defined exit codes and reasons + * + * Using the above, users may communicate intention and context by ORing system + * actions and/or system reasons with a user-defined exit code. + */ +enum scx_exit_code { + /* Reasons */ + SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, + + /* Actions */ + SCX_ECODE_ACT_RESTART = 1LLU << 48, +}; + +/* + * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is + * being disabled. + */ +struct scx_exit_info { + /* %SCX_EXIT_* - broad category of the exit reason */ + enum scx_exit_kind kind; + + /* exit code if gracefully exiting */ + s64 exit_code; + + /* textual representation of the above */ + const char *reason; + + /* backtrace if exiting due to an error */ + unsigned long *bt; + u32 bt_len; + + /* informational message */ + char *msg; + + /* debug dump */ + char *dump; +}; + +/* sched_ext_ops.flags */ +enum scx_ops_flags { + /* + * Keep built-in idle tracking even if ops.update_idle() is implemented. + */ + SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, + + /* + * By default, if there are no other task to run on the CPU, ext core + * keeps running the current task even after its slice expires. If this + * flag is specified, such tasks are passed to ops.enqueue() with + * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. + */ + SCX_OPS_ENQ_LAST = 1LLU << 1, + + /* + * An exiting task may schedule after PF_EXITING is set. In such cases, + * bpf_task_from_pid() may not be able to find the task and if the BPF + * scheduler depends on pid lookup for dispatching, the task will be + * lost leading to various issues including RCU grace period stalls. + * + * To mask this problem, by default, unhashed tasks are automatically + * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't + * depend on pid lookups and wants to handle these tasks directly, the + * following flag can be used. + */ + SCX_OPS_ENQ_EXITING = 1LLU << 2, + + /* + * If set, only tasks with policy set to SCHED_EXT are attached to + * sched_ext. If clear, SCHED_NORMAL tasks are also included. + */ + SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, + + SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | + SCX_OPS_ENQ_LAST | + SCX_OPS_ENQ_EXITING | + SCX_OPS_SWITCH_PARTIAL, +}; + +/* argument container for ops.init_task() */ +struct scx_init_task_args { + /* + * Set if ops.init_task() is being invoked on the fork path, as opposed + * to the scheduler transition path. + */ + bool fork; +}; + +/* argument container for ops.exit_task() */ +struct scx_exit_task_args { + /* Whether the task exited before running on sched_ext. */ + bool cancelled; +}; + +enum scx_cpu_preempt_reason { + /* next task is being scheduled by &sched_class_rt */ + SCX_CPU_PREEMPT_RT, + /* next task is being scheduled by &sched_class_dl */ + SCX_CPU_PREEMPT_DL, + /* next task is being scheduled by &sched_class_stop */ + SCX_CPU_PREEMPT_STOP, + /* unknown reason for SCX being preempted */ + SCX_CPU_PREEMPT_UNKNOWN, +}; + +/* + * Argument container for ops->cpu_acquire(). Currently empty, but may be + * expanded in the future. + */ +struct scx_cpu_acquire_args {}; + +/* argument container for ops->cpu_release() */ +struct scx_cpu_release_args { + /* the reason the CPU was preempted */ + enum scx_cpu_preempt_reason reason; + + /* the task that's going to be scheduled on the CPU */ + struct task_struct *task; +}; + +/* + * Informational context provided to dump operations. + */ +struct scx_dump_ctx { + enum scx_exit_kind kind; + s64 exit_code; + const char *reason; + u64 at_ns; + u64 at_jiffies; +}; + +/** + * struct sched_ext_ops - Operation table for BPF scheduler implementation + * + * Userland can implement an arbitrary scheduling policy by implementing and + * loading operations in this table. + */ +struct sched_ext_ops { + /** + * select_cpu - Pick the target CPU for a task which is being woken up + * @p: task being woken up + * @prev_cpu: the cpu @p was on before sleeping + * @wake_flags: SCX_WAKE_* + * + * Decision made here isn't final. @p may be moved to any CPU while it + * is getting dispatched for execution later. However, as @p is not on + * the rq at this point, getting the eventual execution CPU right here + * saves a small bit of overhead down the line. + * + * If an idle CPU is returned, the CPU is kicked and will try to + * dispatch. While an explicit custom mechanism can be added, + * select_cpu() serves as the default way to wake up idle CPUs. + * + * @p may be dispatched directly by calling scx_bpf_dispatch(). If @p + * is dispatched, the ops.enqueue() callback will be skipped. Finally, + * if @p is dispatched to SCX_DSQ_LOCAL, it will be dispatched to the + * local DSQ of whatever CPU is returned by this callback. + */ + s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); + + /** + * enqueue - Enqueue a task on the BPF scheduler + * @p: task being enqueued + * @enq_flags: %SCX_ENQ_* + * + * @p is ready to run. Dispatch directly by calling scx_bpf_dispatch() + * or enqueue on the BPF scheduler. If not directly dispatched, the bpf + * scheduler owns @p and if it fails to dispatch @p, the task will + * stall. + * + * If @p was dispatched from ops.select_cpu(), this callback is + * skipped. + */ + void (*enqueue)(struct task_struct *p, u64 enq_flags); + + /** + * dequeue - Remove a task from the BPF scheduler + * @p: task being dequeued + * @deq_flags: %SCX_DEQ_* + * + * Remove @p from the BPF scheduler. This is usually called to isolate + * the task while updating its scheduling properties (e.g. priority). + * + * The ext core keeps track of whether the BPF side owns a given task or + * not and can gracefully ignore spurious dispatches from BPF side, + * which makes it safe to not implement this method. However, depending + * on the scheduling logic, this can lead to confusing behaviors - e.g. + * scheduling position not being updated across a priority change. + */ + void (*dequeue)(struct task_struct *p, u64 deq_flags); + + /** + * dispatch - Dispatch tasks from the BPF scheduler and/or consume DSQs + * @cpu: CPU to dispatch tasks for + * @prev: previous task being switched out + * + * Called when a CPU's local dsq is empty. The operation should dispatch + * one or more tasks from the BPF scheduler into the DSQs using + * scx_bpf_dispatch() and/or consume user DSQs into the local DSQ using + * scx_bpf_consume(). + * + * The maximum number of times scx_bpf_dispatch() can be called without + * an intervening scx_bpf_consume() is specified by + * ops.dispatch_max_batch. See the comments on top of the two functions + * for more details. + * + * When not %NULL, @prev is an SCX task with its slice depleted. If + * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in + * @prev->scx.flags, it is not enqueued yet and will be enqueued after + * ops.dispatch() returns. To keep executing @prev, return without + * dispatching or consuming any tasks. Also see %SCX_OPS_ENQ_LAST. + */ + void (*dispatch)(s32 cpu, struct task_struct *prev); + + /** + * tick - Periodic tick + * @p: task running currently + * + * This operation is called every 1/HZ seconds on CPUs which are + * executing an SCX task. Setting @p->scx.slice to 0 will trigger an + * immediate dispatch cycle on the CPU. + */ + void (*tick)(struct task_struct *p); + + /** + * runnable - A task is becoming runnable on its associated CPU + * @p: task becoming runnable + * @enq_flags: %SCX_ENQ_* + * + * This and the following three functions can be used to track a task's + * execution state transitions. A task becomes ->runnable() on a CPU, + * and then goes through one or more ->running() and ->stopping() pairs + * as it runs on the CPU, and eventually becomes ->quiescent() when it's + * done running on the CPU. + * + * @p is becoming runnable on the CPU because it's + * + * - waking up (%SCX_ENQ_WAKEUP) + * - being moved from another CPU + * - being restored after temporarily taken off the queue for an + * attribute change. + * + * This and ->enqueue() are related but not coupled. This operation + * notifies @p's state transition and may not be followed by ->enqueue() + * e.g. when @p is being dispatched to a remote CPU, or when @p is + * being enqueued on a CPU experiencing a hotplug event. Likewise, a + * task may be ->enqueue()'d without being preceded by this operation + * e.g. after exhausting its slice. + */ + void (*runnable)(struct task_struct *p, u64 enq_flags); + + /** + * running - A task is starting to run on its associated CPU + * @p: task starting to run + * + * See ->runnable() for explanation on the task state notifiers. + */ + void (*running)(struct task_struct *p); + + /** + * stopping - A task is stopping execution + * @p: task stopping to run + * @runnable: is task @p still runnable? + * + * See ->runnable() for explanation on the task state notifiers. If + * !@runnable, ->quiescent() will be invoked after this operation + * returns. + */ + void (*stopping)(struct task_struct *p, bool runnable); + + /** + * quiescent - A task is becoming not runnable on its associated CPU + * @p: task becoming not runnable + * @deq_flags: %SCX_DEQ_* + * + * See ->runnable() for explanation on the task state notifiers. + * + * @p is becoming quiescent on the CPU because it's + * + * - sleeping (%SCX_DEQ_SLEEP) + * - being moved to another CPU + * - being temporarily taken off the queue for an attribute change + * (%SCX_DEQ_SAVE) + * + * This and ->dequeue() are related but not coupled. This operation + * notifies @p's state transition and may not be preceded by ->dequeue() + * e.g. when @p is being dispatched to a remote CPU. + */ + void (*quiescent)(struct task_struct *p, u64 deq_flags); + + /** + * yield - Yield CPU + * @from: yielding task + * @to: optional yield target task + * + * If @to is NULL, @from is yielding the CPU to other runnable tasks. + * The BPF scheduler should ensure that other available tasks are + * dispatched before the yielding task. Return value is ignored in this + * case. + * + * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf + * scheduler can implement the request, return %true; otherwise, %false. + */ + bool (*yield)(struct task_struct *from, struct task_struct *to); + + /** + * core_sched_before - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Used by core-sched to determine the ordering between two tasks. See + * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on + * core-sched. + * + * Both @a and @b are runnable and may or may not currently be queued on + * the BPF scheduler. Should return %true if @a should run before @b. + * %false if there's no required ordering or @b should run before @a. + * + * If not specified, the default is ordering them according to when they + * became runnable. + */ + bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); + + /** + * set_weight - Set task weight + * @p: task to set weight for + * @weight: new weight [1..10000] + * + * Update @p's weight to @weight. + */ + void (*set_weight)(struct task_struct *p, u32 weight); + + /** + * set_cpumask - Set CPU affinity + * @p: task to set CPU affinity for + * @cpumask: cpumask of cpus that @p can run on + * + * Update @p's CPU affinity to @cpumask. + */ + void (*set_cpumask)(struct task_struct *p, + const struct cpumask *cpumask); + + /** + * update_idle - Update the idle state of a CPU + * @cpu: CPU to udpate the idle state for + * @idle: whether entering or exiting the idle state + * + * This operation is called when @rq's CPU goes or leaves the idle + * state. By default, implementing this operation disables the built-in + * idle CPU tracking and the following helpers become unavailable: + * + * - scx_bpf_select_cpu_dfl() + * - scx_bpf_test_and_clear_cpu_idle() + * - scx_bpf_pick_idle_cpu() + * + * The user also must implement ops.select_cpu() as the default + * implementation relies on scx_bpf_select_cpu_dfl(). + * + * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle + * tracking. + */ + void (*update_idle)(s32 cpu, bool idle); + + /** + * cpu_acquire - A CPU is becoming available to the BPF scheduler + * @cpu: The CPU being acquired by the BPF scheduler. + * @args: Acquire arguments, see the struct definition. + * + * A CPU that was previously released from the BPF scheduler is now once + * again under its control. + */ + void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); + + /** + * cpu_release - A CPU is taken away from the BPF scheduler + * @cpu: The CPU being released by the BPF scheduler. + * @args: Release arguments, see the struct definition. + * + * The specified CPU is no longer under the control of the BPF + * scheduler. This could be because it was preempted by a higher + * priority sched_class, though there may be other reasons as well. The + * caller should consult @args->reason to determine the cause. + */ + void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); + + /** + * init_task - Initialize a task to run in a BPF scheduler + * @p: task to initialize for BPF scheduling + * @args: init arguments, see the struct definition + * + * Either we're loading a BPF scheduler or a new task is being forked. + * Initialize @p for BPF scheduling. This operation may block and can + * be used for allocations, and is called exactly once for a task. + * + * Return 0 for success, -errno for failure. An error return while + * loading will abort loading of the BPF scheduler. During a fork, it + * will abort that specific fork. + */ + s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); + + /** + * exit_task - Exit a previously-running task from the system + * @p: task to exit + * + * @p is exiting or the BPF scheduler is being unloaded. Perform any + * necessary cleanup for @p. + */ + void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); + + /** + * enable - Enable BPF scheduling for a task + * @p: task to enable BPF scheduling for + * + * Enable @p for BPF scheduling. enable() is called on @p any time it + * enters SCX, and is always paired with a matching disable(). + */ + void (*enable)(struct task_struct *p); + + /** + * disable - Disable BPF scheduling for a task + * @p: task to disable BPF scheduling for + * + * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. + * Disable BPF scheduling for @p. A disable() call is always matched + * with a prior enable() call. + */ + void (*disable)(struct task_struct *p); + + /** + * dump - Dump BPF scheduler state on error + * @ctx: debug dump context + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. + */ + void (*dump)(struct scx_dump_ctx *ctx); + + /** + * dump_cpu - Dump BPF scheduler state for a CPU on error + * @ctx: debug dump context + * @cpu: CPU to generate debug dump for + * @idle: @cpu is currently idle without any runnable tasks + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for + * @cpu. If @idle is %true and this operation doesn't produce any + * output, @cpu is skipped for dump. + */ + void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); + + /** + * dump_task - Dump BPF scheduler state for a runnable task on error + * @ctx: debug dump context + * @p: runnable task to generate debug dump for + * + * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for + * @p. + */ + void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); + + /* + * All online ops must come before ops.cpu_online(). + */ + + /** + * cpu_online - A CPU became online + * @cpu: CPU which just came up + * + * @cpu just came online. @cpu will not call ops.enqueue() or + * ops.dispatch(), nor run tasks associated with other CPUs beforehand. + */ + void (*cpu_online)(s32 cpu); + + /** + * cpu_offline - A CPU is going offline + * @cpu: CPU which is going offline + * + * @cpu is going offline. @cpu will not call ops.enqueue() or + * ops.dispatch(), nor run tasks associated with other CPUs afterwards. + */ + void (*cpu_offline)(s32 cpu); + + /* + * All CPU hotplug ops must come before ops.init(). + */ + + /** + * init - Initialize the BPF scheduler + */ + s32 (*init)(void); + + /** + * exit - Clean up after the BPF scheduler + * @info: Exit info + */ + void (*exit)(struct scx_exit_info *info); + + /** + * dispatch_max_batch - Max nr of tasks that dispatch() can dispatch + */ + u32 dispatch_max_batch; + + /** + * flags - %SCX_OPS_* flags + */ + u64 flags; + + /** + * timeout_ms - The maximum amount of time, in milliseconds, that a + * runnable task should be able to wait before being scheduled. The + * maximum timeout may not exceed the default timeout of 30 seconds. + * + * Defaults to the maximum allowed timeout value of 30 seconds. + */ + u32 timeout_ms; + + /** + * exit_dump_len - scx_exit_info.dump buffer length. If 0, the default + * value of 32768 is used. + */ + u32 exit_dump_len; + + /** + * hotplug_seq - A sequence number that may be set by the scheduler to + * detect when a hotplug event has occurred during the loading process. + * If 0, no detection occurs. Otherwise, the scheduler will fail to + * load if the sequence number does not match @scx_hotplug_seq on the + * enable path. + */ + u64 hotplug_seq; + + /** + * name - BPF scheduler's name + * + * Must be a non-zero valid BPF object name including only isalnum(), + * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the + * BPF scheduler is enabled. + */ + char name[SCX_OPS_NAME_LEN]; +}; + +enum scx_opi { + SCX_OPI_BEGIN = 0, + SCX_OPI_NORMAL_BEGIN = 0, + SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), + SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), + SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), + SCX_OPI_END = SCX_OP_IDX(init), +}; + +enum scx_wake_flags { + /* expose select WF_* flags as enums */ + SCX_WAKE_FORK = WF_FORK, + SCX_WAKE_TTWU = WF_TTWU, + SCX_WAKE_SYNC = WF_SYNC, +}; + +enum scx_enq_flags { + /* expose select ENQUEUE_* flags as enums */ + SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, + SCX_ENQ_HEAD = ENQUEUE_HEAD, + + /* high 32bits are SCX specific */ + + /* + * Set the following to trigger preemption when calling + * scx_bpf_dispatch() with a local dsq as the target. The slice of the + * current task is cleared to zero and the CPU is kicked into the + * scheduling path. Implies %SCX_ENQ_HEAD. + */ + SCX_ENQ_PREEMPT = 1LLU << 32, + + /* + * The task being enqueued was previously enqueued on the current CPU's + * %SCX_DSQ_LOCAL, but was removed from it in a call to the + * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was + * invoked in a ->cpu_release() callback, and the task is again + * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the + * task will not be scheduled on the CPU until at least the next invocation + * of the ->cpu_acquire() callback. + */ + SCX_ENQ_REENQ = 1LLU << 40, + + /* + * The task being enqueued is the only task available for the cpu. By + * default, ext core keeps executing such tasks but when + * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the + * %SCX_ENQ_LAST flag set. + * + * If the BPF scheduler wants to continue executing the task, + * ops.enqueue() should dispatch the task to %SCX_DSQ_LOCAL immediately. + * If the task gets queued on a different dsq or the BPF side, the BPF + * scheduler is responsible for triggering a follow-up scheduling event. + * Otherwise, Execution may stall. + */ + SCX_ENQ_LAST = 1LLU << 41, + + /* high 8 bits are internal */ + __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, + + SCX_ENQ_CLEAR_OPSS = 1LLU << 56, + SCX_ENQ_DSQ_PRIQ = 1LLU << 57, +}; + +enum scx_deq_flags { + /* expose select DEQUEUE_* flags as enums */ + SCX_DEQ_SLEEP = DEQUEUE_SLEEP, + + /* high 32bits are SCX specific */ + + /* + * The generic core-sched layer decided to execute the task even though + * it hasn't been dispatched yet. Dequeue from the BPF side. + */ + SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, +}; + +enum scx_pick_idle_cpu_flags { + SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ +}; + +enum scx_kick_flags { + /* + * Kick the target CPU if idle. Guarantees that the target CPU goes + * through at least one full scheduling cycle before going idle. If the + * target CPU can be determined to be currently not idle and going to go + * through a scheduling cycle before going idle, noop. + */ + SCX_KICK_IDLE = 1LLU << 0, + + /* + * Preempt the current task and execute the dispatch path. If the + * current task of the target CPU is an SCX task, its ->scx.slice is + * cleared to zero before the scheduling path is invoked so that the + * task expires and the dispatch path is invoked. + */ + SCX_KICK_PREEMPT = 1LLU << 1, + + /* + * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will + * return after the target CPU finishes picking the next task. + */ + SCX_KICK_WAIT = 1LLU << 2, +}; + +enum scx_ops_enable_state { + SCX_OPS_PREPPING, + SCX_OPS_ENABLING, + SCX_OPS_ENABLED, + SCX_OPS_DISABLING, + SCX_OPS_DISABLED, +}; + +static const char *scx_ops_enable_state_str[] = { + [SCX_OPS_PREPPING] = "prepping", + [SCX_OPS_ENABLING] = "enabling", + [SCX_OPS_ENABLED] = "enabled", + [SCX_OPS_DISABLING] = "disabling", + [SCX_OPS_DISABLED] = "disabled", +}; + +/* + * sched_ext_entity->ops_state + * + * Used to track the task ownership between the SCX core and the BPF scheduler. + * State transitions look as follows: + * + * NONE -> QUEUEING -> QUEUED -> DISPATCHING + * ^ | | + * | v v + * \-------------------------------/ + * + * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call + * sites for explanations on the conditions being waited upon and why they are + * safe. Transitions out of them into NONE or QUEUED must store_release and the + * waiters should load_acquire. + * + * Tracking scx_ops_state enables sched_ext core to reliably determine whether + * any given task can be dispatched by the BPF scheduler at all times and thus + * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler + * to try to dispatch any task anytime regardless of its state as the SCX core + * can safely reject invalid dispatches. + */ +enum scx_ops_state { + SCX_OPSS_NONE, /* owned by the SCX core */ + SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ + SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ + SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ + + /* + * QSEQ brands each QUEUED instance so that, when dispatch races + * dequeue/requeue, the dispatcher can tell whether it still has a claim + * on the task being dispatched. + * + * As some 32bit archs can't do 64bit store_release/load_acquire, + * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on + * 32bit machines. The dispatch race window QSEQ protects is very narrow + * and runs with IRQ disabled. 30 bits should be sufficient. + */ + SCX_OPSS_QSEQ_SHIFT = 2, +}; + +/* Use macros to ensure that the type is unsigned long for the masks */ +#define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) +#define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) + +/* + * During exit, a task may schedule after losing its PIDs. When disabling the + * BPF scheduler, we need to be able to iterate tasks in every state to + * guarantee system safety. Maintain a dedicated task list which contains every + * task between its fork and eventual free. + */ +static DEFINE_SPINLOCK(scx_tasks_lock); +static LIST_HEAD(scx_tasks); + +/* ops enable/disable */ +static struct kthread_worker *scx_ops_helper; +static DEFINE_MUTEX(scx_ops_enable_mutex); +DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); +DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); +static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); +static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0); +static bool scx_switching_all; +DEFINE_STATIC_KEY_FALSE(__scx_switched_all); + +static struct sched_ext_ops scx_ops; +static bool scx_warned_zero_slice; + +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); +static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); +static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); +static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled); + +struct static_key_false scx_has_op[SCX_OPI_END] = + { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; + +static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); +static struct scx_exit_info *scx_exit_info; + +static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); +static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); + +/* + * The maximum amount of time in jiffies that a task may be runnable without + * being scheduled on a CPU. If this timeout is exceeded, it will trigger + * scx_ops_error(). + */ +static unsigned long scx_watchdog_timeout; + +/* + * The last time the delayed work was run. This delayed work relies on + * ksoftirqd being able to run to service timer interrupts, so it's possible + * that this work itself could get wedged. To account for this, we check that + * it's not stalled in the timer tick, and trigger an error if it is. + */ +static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; + +static struct delayed_work scx_watchdog_work; + +/* idle tracking */ +#ifdef CONFIG_SMP +#ifdef CONFIG_CPUMASK_OFFSTACK +#define CL_ALIGNED_IF_ONSTACK +#else +#define CL_ALIGNED_IF_ONSTACK __cacheline_aligned_in_smp +#endif + +static struct { + cpumask_var_t cpu; + cpumask_var_t smt; +} idle_masks CL_ALIGNED_IF_ONSTACK; + +#endif /* CONFIG_SMP */ + +/* for %SCX_KICK_WAIT */ +static unsigned long __percpu *scx_kick_cpus_pnt_seqs; + +/* + * Direct dispatch marker. + * + * Non-NULL values are used for direct dispatch from enqueue path. A valid + * pointer points to the task currently being enqueued. An ERR_PTR value is used + * to indicate that direct dispatch has already happened. + */ +static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); + +/* dispatch queues */ +static struct scx_dispatch_q __cacheline_aligned_in_smp scx_dsq_global; + +static const struct rhashtable_params dsq_hash_params = { + .key_len = 8, + .key_offset = offsetof(struct scx_dispatch_q, id), + .head_offset = offsetof(struct scx_dispatch_q, hash_node), +}; + +static struct rhashtable dsq_hash; +static LLIST_HEAD(dsqs_to_free); + +/* dispatch buf */ +struct scx_dsp_buf_ent { + struct task_struct *task; + unsigned long qseq; + u64 dsq_id; + u64 enq_flags; +}; + +static u32 scx_dsp_max_batch; + +struct scx_dsp_ctx { + struct rq *rq; + u32 cursor; + u32 nr_tasks; + struct scx_dsp_buf_ent buf[]; +}; + +static struct scx_dsp_ctx __percpu *scx_dsp_ctx; + +/* string formatting from BPF */ +struct scx_bstr_buf { + u64 data[MAX_BPRINTF_VARARGS]; + char line[SCX_EXIT_MSG_LEN]; +}; + +static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); +static struct scx_bstr_buf scx_exit_bstr_buf; + +/* ops debug dump */ +struct scx_dump_data { + s32 cpu; + bool first; + s32 cursor; + struct seq_buf *s; + const char *prefix; + struct scx_bstr_buf buf; +}; + +struct scx_dump_data scx_dump_data = { + .cpu = -1, +}; + +/* /sys/kernel/sched_ext interface */ +static struct kset *scx_kset; +static struct kobject *scx_root_kobj; + +#define CREATE_TRACE_POINTS +#include + +static void process_ddsp_deferred_locals(struct rq *rq); +static void scx_bpf_kick_cpu(s32 cpu, u64 flags); +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, + s64 exit_code, + const char *fmt, ...); + +#define scx_ops_error_kind(err, fmt, args...) \ + scx_ops_exit_kind((err), 0, fmt, ##args) + +#define scx_ops_exit(code, fmt, args...) \ + scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) + +#define scx_ops_error(fmt, args...) \ + scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) + +#define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) + +static long jiffies_delta_msecs(unsigned long at, unsigned long now) +{ + if (time_after(at, now)) + return jiffies_to_msecs(at - now); + else + return -(long)jiffies_to_msecs(now - at); +} + +/* if the highest set bit is N, return a mask with bits [N+1, 31] set */ +static u32 higher_bits(u32 flags) +{ + return ~((1 << fls(flags)) - 1); +} + +/* return the mask with only the highest bit set */ +static u32 highest_bit(u32 flags) +{ + int bit = fls(flags); + return ((u64)1 << bit) >> 1; +} + +static bool u32_before(u32 a, u32 b) +{ + return (s32)(a - b) < 0; +} + +/* + * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX + * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate + * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check + * whether it's running from an allowed context. + * + * @mask is constant, always inline to cull the mask calculations. + */ +static __always_inline void scx_kf_allow(u32 mask) +{ + /* nesting is allowed only in increasing scx_kf_mask order */ + WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, + "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", + current->scx.kf_mask, mask); + current->scx.kf_mask |= mask; + barrier(); +} + +static void scx_kf_disallow(u32 mask) +{ + barrier(); + current->scx.kf_mask &= ~mask; +} + +#define SCX_CALL_OP(mask, op, args...) \ +do { \ + if (mask) { \ + scx_kf_allow(mask); \ + scx_ops.op(args); \ + scx_kf_disallow(mask); \ + } else { \ + scx_ops.op(args); \ + } \ +} while (0) + +#define SCX_CALL_OP_RET(mask, op, args...) \ +({ \ + __typeof__(scx_ops.op(args)) __ret; \ + if (mask) { \ + scx_kf_allow(mask); \ + __ret = scx_ops.op(args); \ + scx_kf_disallow(mask); \ + } else { \ + __ret = scx_ops.op(args); \ + } \ + __ret; \ +}) + +/* + * Some kfuncs are allowed only on the tasks that are subjects of the + * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such + * restrictions, the following SCX_CALL_OP_*() variants should be used when + * invoking scx_ops operations that take task arguments. These can only be used + * for non-nesting operations due to the way the tasks are tracked. + * + * kfuncs which can only operate on such tasks can in turn use + * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on + * the specific task. + */ +#define SCX_CALL_OP_TASK(mask, op, task, args...) \ +do { \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task; \ + SCX_CALL_OP(mask, op, task, ##args); \ + current->scx.kf_tasks[0] = NULL; \ +} while (0) + +#define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ +({ \ + __typeof__(scx_ops.op(task, ##args)) __ret; \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task; \ + __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ + current->scx.kf_tasks[0] = NULL; \ + __ret; \ +}) + +#define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ +({ \ + __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ + BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ + current->scx.kf_tasks[0] = task0; \ + current->scx.kf_tasks[1] = task1; \ + __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ + current->scx.kf_tasks[0] = NULL; \ + current->scx.kf_tasks[1] = NULL; \ + __ret; \ +}) + +/* @mask is constant, always inline to cull unnecessary branches */ +static __always_inline bool scx_kf_allowed(u32 mask) +{ + if (unlikely(!(current->scx.kf_mask & mask))) { + scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", + mask, current->scx.kf_mask); + return false; + } + + /* + * Enforce nesting boundaries. e.g. A kfunc which can be called from + * DISPATCH must not be called if we're running DEQUEUE which is nested + * inside ops.dispatch(). We don't need to check boundaries for any + * blocking kfuncs as the verifier ensures they're only called from + * sleepable progs. + */ + if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && + (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { + scx_ops_error("cpu_release kfunc called from a nested operation"); + return false; + } + + if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && + (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { + scx_ops_error("dispatch kfunc called from a nested operation"); + return false; + } + + return true; +} + +/* see SCX_CALL_OP_TASK() */ +static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, + struct task_struct *p) +{ + if (!scx_kf_allowed(mask)) + return false; + + if (unlikely((p != current->scx.kf_tasks[0] && + p != current->scx.kf_tasks[1]))) { + scx_ops_error("called on a task not being operated on"); + return false; + } + + return true; +} + +/** + * nldsq_next_task - Iterate to the next task in a non-local DSQ + * @dsq: user dsq being interated + * @cur: current position, %NULL to start iteration + * @rev: walk backwards + * + * Returns %NULL when iteration is finished. + */ +static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, + struct task_struct *cur, bool rev) +{ + struct list_head *list_node; + struct scx_dsq_list_node *dsq_lnode; + + lockdep_assert_held(&dsq->lock); + + if (cur) + list_node = &cur->scx.dsq_list.node; + else + list_node = &dsq->list; + + /* find the next task, need to skip BPF iteration cursors */ + do { + if (rev) + list_node = list_node->prev; + else + list_node = list_node->next; + + if (list_node == &dsq->list) + return NULL; + + dsq_lnode = container_of(list_node, struct scx_dsq_list_node, + node); + } while (dsq_lnode->is_bpf_iter_cursor); + + return container_of(dsq_lnode, struct task_struct, scx.dsq_list); +} + +#define nldsq_for_each_task(p, dsq) \ + for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ + (p) = nldsq_next_task((dsq), (p), false)) + + +/* + * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] + * dispatch order. BPF-visible iterator is opaque and larger to allow future + * changes without breaking backward compatibility. Can be used with + * bpf_for_each(). See bpf_iter_scx_dsq_*(). + */ +enum scx_dsq_iter_flags { + /* iterate in the reverse dispatch order */ + SCX_DSQ_ITER_REV = 1U << 0, + + __SCX_DSQ_ITER_ALL_FLAGS = SCX_DSQ_ITER_REV, +}; + +struct bpf_iter_scx_dsq_kern { + struct scx_dsq_list_node cursor; + struct scx_dispatch_q *dsq; + u32 dsq_seq; + u32 flags; +} __attribute__((aligned(8))); + +struct bpf_iter_scx_dsq { + u64 __opaque[6]; +} __attribute__((aligned(8))); + + +/* + * SCX task iterator. + */ +struct scx_task_iter { + struct sched_ext_entity cursor; + struct task_struct *locked; + struct rq *rq; + struct rq_flags rf; +}; + +/** + * scx_task_iter_init - Initialize a task iterator + * @iter: iterator to init + * + * Initialize @iter. Must be called with scx_tasks_lock held. Once initialized, + * @iter must eventually be exited with scx_task_iter_exit(). + * + * scx_tasks_lock may be released between this and the first next() call or + * between any two next() calls. If scx_tasks_lock is released between two + * next() calls, the caller is responsible for ensuring that the task being + * iterated remains accessible either through RCU read lock or obtaining a + * reference count. + * + * All tasks which existed when the iteration started are guaranteed to be + * visited as long as they still exist. + */ +static void scx_task_iter_init(struct scx_task_iter *iter) +{ + lockdep_assert_held(&scx_tasks_lock); + + iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; + list_add(&iter->cursor.tasks_node, &scx_tasks); + iter->locked = NULL; +} + +/** + * scx_task_iter_rq_unlock - Unlock rq locked by a task iterator + * @iter: iterator to unlock rq for + * + * If @iter is in the middle of a locked iteration, it may be locking the rq of + * the task currently being visited. Unlock the rq if so. This function can be + * safely called anytime during an iteration. + * + * Returns %true if the rq @iter was locking is unlocked. %false if @iter was + * not locking an rq. + */ +static bool scx_task_iter_rq_unlock(struct scx_task_iter *iter) +{ + if (iter->locked) { + task_rq_unlock(iter->rq, iter->locked, &iter->rf); + iter->locked = NULL; + return true; + } else { + return false; + } +} + +/** + * scx_task_iter_exit - Exit a task iterator + * @iter: iterator to exit + * + * Exit a previously initialized @iter. Must be called with scx_tasks_lock held. + * If the iterator holds a task's rq lock, that rq lock is released. See + * scx_task_iter_init() for details. + */ +static void scx_task_iter_exit(struct scx_task_iter *iter) +{ + lockdep_assert_held(&scx_tasks_lock); + + scx_task_iter_rq_unlock(iter); + list_del_init(&iter->cursor.tasks_node); +} + +/** + * scx_task_iter_next - Next task + * @iter: iterator to walk + * + * Visit the next task. See scx_task_iter_init() for details. + */ +static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) +{ + struct list_head *cursor = &iter->cursor.tasks_node; + struct sched_ext_entity *pos; + + lockdep_assert_held(&scx_tasks_lock); + + list_for_each_entry(pos, cursor, tasks_node) { + if (&pos->tasks_node == &scx_tasks) + return NULL; + if (!(pos->flags & SCX_TASK_CURSOR)) { + list_move(cursor, &pos->tasks_node); + return container_of(pos, struct task_struct, scx); + } + } + + /* can't happen, should always terminate at scx_tasks above */ + BUG(); +} + +/** + * scx_task_iter_next_locked - Next non-idle task with its rq locked + * @iter: iterator to walk + * @include_dead: Whether we should include dead tasks in the iteration + * + * Visit the non-idle task with its rq lock held. Allows callers to specify + * whether they would like to filter out dead tasks. See scx_task_iter_init() + * for details. + */ +static struct task_struct * +scx_task_iter_next_locked(struct scx_task_iter *iter, bool include_dead) +{ + struct task_struct *p; +retry: + scx_task_iter_rq_unlock(iter); + + while ((p = scx_task_iter_next(iter))) { + /* + * is_idle_task() tests %PF_IDLE which may not be set for CPUs + * which haven't yet been onlined. Test sched_class directly. + */ + if (p->sched_class != &idle_sched_class) + break; + } + if (!p) + return NULL; + + iter->rq = task_rq_lock(p, &iter->rf); + iter->locked = p; + + /* + * If we see %TASK_DEAD, @p already disabled preemption, is about to do + * the final __schedule(), won't ever need to be scheduled again and can + * thus be safely ignored. If we don't see %TASK_DEAD, @p can't enter + * the final __schedle() while we're locking its rq and thus will stay + * alive until the rq is unlocked. + */ + if (!include_dead && READ_ONCE(p->__state) == TASK_DEAD) + goto retry; + + return p; +} + +static enum scx_ops_enable_state scx_ops_enable_state(void) +{ + return atomic_read(&scx_ops_enable_state_var); +} + +static enum scx_ops_enable_state +scx_ops_set_enable_state(enum scx_ops_enable_state to) +{ + return atomic_xchg(&scx_ops_enable_state_var, to); +} + +static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, + enum scx_ops_enable_state from) +{ + int from_v = from; + + return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); +} + +static bool scx_ops_bypassing(void) +{ + return unlikely(atomic_read(&scx_ops_bypass_depth)); +} + +/** + * wait_ops_state - Busy-wait the specified ops state to end + * @p: target task + * @opss: state to wait the end of + * + * Busy-wait for @p to transition out of @opss. This can only be used when the + * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also + * has load_acquire semantics to ensure that the caller can see the updates made + * in the enqueueing and dispatching paths. + */ +static void wait_ops_state(struct task_struct *p, unsigned long opss) +{ + do { + cpu_relax(); + } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); +} + +/** + * ops_cpu_valid - Verify a cpu number + * @cpu: cpu number which came from a BPF ops + * @where: extra information reported on error + * + * @cpu is a cpu number which came from the BPF scheduler and can be any value. + * Verify that it is in range and one of the possible cpus. If invalid, trigger + * an ops error. + */ +static bool ops_cpu_valid(s32 cpu, const char *where) +{ + if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { + return true; + } else { + scx_ops_error("invalid CPU %d%s%s", cpu, + where ? " " : "", where ?: ""); + return false; + } +} + +/** + * ops_sanitize_err - Sanitize a -errno value + * @ops_name: operation to blame on failure + * @err: -errno value to sanitize + * + * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return + * -%EPROTO. This is necessary because returning a rogue -errno up the chain can + * cause misbehaviors. For an example, a large negative return from + * ops.init_task() triggers an oops when passed up the call chain because the + * value fails IS_ERR() test after being encoded with ERR_PTR() and then is + * handled as a pointer. + */ +static int ops_sanitize_err(const char *ops_name, s32 err) +{ + if (err < 0 && err >= -MAX_ERRNO) + return err; + + scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); + return -EPROTO; +} + +static void run_deferred(struct rq *rq) +{ + process_ddsp_deferred_locals(rq); +} + +#ifdef CONFIG_SMP +static void deferred_bal_cb_workfn(struct rq *rq) +{ + run_deferred(rq); +} +#endif + +static void deferred_irq_workfn(struct irq_work *irq_work) +{ + struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); + + raw_spin_rq_lock(rq); + run_deferred(rq); + raw_spin_rq_unlock(rq); +} + +/** + * schedule_deferred - Schedule execution of deferred actions on an rq + * @rq: target rq + * + * Schedule execution of deferred actions on @rq. Must be called with @rq + * locked. Deferred actions are executed with @rq locked but unpinned, and thus + * can unlock @rq to e.g. migrate tasks to other rqs. + */ +static void schedule_deferred(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + +#ifdef CONFIG_SMP + /* + * If in the middle of waking up a task, task_woken_scx() will be called + * afterwards which will then run the deferred actions, no need to + * schedule anything. + */ + if (rq->scx.flags & SCX_RQ_IN_WAKEUP) + return; + + /* + * If in balance, the balance callbacks will be called before rq lock is + * released. Schedule one. + */ + if (rq->scx.flags & SCX_RQ_IN_BALANCE) { + queue_balance_callback(rq, &rq->scx.deferred_bal_cb, + deferred_bal_cb_workfn); + return; + } +#endif + /* + * No scheduler hooks available. Queue an irq work. They are executed on + * IRQ re-enable which may take a bit longer than the scheduler hooks. + * The above WAKEUP and BALANCE paths should cover most of the cases and + * the time to IRQ re-enable shouldn't be long. + */ + irq_work_queue(&rq->scx.deferred_irq_work); +} + +/** + * touch_core_sched - Update timestamp used for core-sched task ordering + * @rq: rq to read clock from, must be locked + * @p: task to update the timestamp for + * + * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to + * implement global or local-DSQ FIFO ordering for core-sched. Should be called + * when a task becomes runnable and its turn on the CPU ends (e.g. slice + * exhaustion). + */ +static void touch_core_sched(struct rq *rq, struct task_struct *p) +{ +#ifdef CONFIG_SCHED_CORE + /* + * It's okay to update the timestamp spuriously. Use + * sched_core_disabled() which is cheaper than enabled(). + */ + if (!sched_core_disabled()) + p->scx.core_sched_at = rq_clock_task(rq); +#endif +} + +/** + * touch_core_sched_dispatch - Update core-sched timestamp on dispatch + * @rq: rq to read clock from, must be locked + * @p: task being dispatched + * + * If the BPF scheduler implements custom core-sched ordering via + * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO + * ordering within each local DSQ. This function is called from dispatch paths + * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. + */ +static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + assert_clock_updated(rq); + +#ifdef CONFIG_SCHED_CORE + if (SCX_HAS_OP(core_sched_before)) + touch_core_sched(rq, p); +#endif +} + +static void update_curr_scx(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + u64 now = rq_clock_task(rq); + u64 delta_exec; + + if (time_before_eq64(now, curr->se.exec_start)) + return; + + delta_exec = now - curr->se.exec_start; + curr->se.exec_start = now; + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + cgroup_account_cputime(curr, delta_exec); + + if (curr->scx.slice != SCX_SLICE_INF) { + curr->scx.slice -= min(curr->scx.slice, delta_exec); + if (!curr->scx.slice) + touch_core_sched(rq, curr); + } +} + +static bool scx_dsq_priq_less(struct rb_node *node_a, + const struct rb_node *node_b) +{ + const struct task_struct *a = + container_of(node_a, struct task_struct, scx.dsq_priq); + const struct task_struct *b = + container_of(node_b, struct task_struct, scx.dsq_priq); + + return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); +} + +static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) +{ + /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ + WRITE_ONCE(dsq->nr, dsq->nr + delta); +} + +static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, + u64 enq_flags) +{ + bool is_local = dsq->id == SCX_DSQ_LOCAL; + + WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); + WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || + !RB_EMPTY_NODE(&p->scx.dsq_priq)); + + if (!is_local) { + raw_spin_lock(&dsq->lock); + if (unlikely(dsq->id == SCX_DSQ_INVALID)) { + scx_ops_error("attempting to dispatch to a destroyed dsq"); + /* fall back to the global dsq */ + raw_spin_unlock(&dsq->lock); + dsq = &scx_dsq_global; + raw_spin_lock(&dsq->lock); + } + } + + if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && + (enq_flags & SCX_ENQ_DSQ_PRIQ))) { + /* + * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from + * their FIFO queues. To avoid confusion and accidentally + * starving vtime-dispatched tasks by FIFO-dispatched tasks, we + * disallow any internal DSQ from doing vtime ordering of + * tasks. + */ + scx_ops_error("cannot use vtime ordering for built-in DSQs"); + enq_flags &= ~SCX_ENQ_DSQ_PRIQ; + } + + if (enq_flags & SCX_ENQ_DSQ_PRIQ) { + struct rb_node *rbp; + + /* + * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are + * linked to both the rbtree and list on PRIQs, this can only be + * tested easily when adding the first task. + */ + if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && + nldsq_next_task(dsq, NULL, false))) + scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", + dsq->id); + + p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; + rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); + + /* + * Find the previous task and insert after it on the list so + * that @dsq->list is vtime ordered. + */ + rbp = rb_prev(&p->scx.dsq_priq); + if (rbp) { + struct task_struct *prev = + container_of(rbp, struct task_struct, + scx.dsq_priq); + list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); + } else { + list_add(&p->scx.dsq_list.node, &dsq->list); + } + } else { + /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ + if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) + scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", + dsq->id); + + if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) + list_add(&p->scx.dsq_list.node, &dsq->list); + else + list_add_tail(&p->scx.dsq_list.node, &dsq->list); + } + + /* seq records the order tasks are queued, used by BPF DSQ iterator */ + dsq->seq++; + p->scx.dsq_seq = dsq->seq; + + dsq_mod_nr(dsq, 1); + p->scx.dsq = dsq; + + /* + * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the + * direct dispatch path, but we clear them here because the direct + * dispatch verdict may be overridden on the enqueue path during e.g. + * bypass. + */ + p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; + p->scx.ddsp_enq_flags = 0; + + /* + * We're transitioning out of QUEUEING or DISPATCHING. store_release to + * match waiters' load_acquire. + */ + if (enq_flags & SCX_ENQ_CLEAR_OPSS) + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + + if (is_local) { + struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); + bool preempt = false; + + if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && + rq->curr->sched_class == &ext_sched_class) { + rq->curr->scx.slice = 0; + preempt = true; + } + + if (preempt || sched_class_above(&ext_sched_class, + rq->curr->sched_class)) + resched_curr(rq); + } else { + raw_spin_unlock(&dsq->lock); + } +} + +static void task_unlink_from_dsq(struct task_struct *p, + struct scx_dispatch_q *dsq) +{ + if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { + rb_erase(&p->scx.dsq_priq, &dsq->priq); + RB_CLEAR_NODE(&p->scx.dsq_priq); + p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; + } + + list_del_init(&p->scx.dsq_list.node); +} + +static void dispatch_dequeue(struct rq *rq, struct task_struct *p) +{ + struct scx_dispatch_q *dsq = p->scx.dsq; + bool is_local = dsq == &rq->scx.local_dsq; + + if (!dsq) { + /* + * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. + * Unlinking is all that's needed to cancel. + */ + if (unlikely(!list_empty(&p->scx.dsq_list.node))) + list_del_init(&p->scx.dsq_list.node); + + /* + * When dispatching directly from the BPF scheduler to a local + * DSQ, the task isn't associated with any DSQ but + * @p->scx.holding_cpu may be set under the protection of + * %SCX_OPSS_DISPATCHING. + */ + if (p->scx.holding_cpu >= 0) + p->scx.holding_cpu = -1; + + return; + } + + if (!is_local) + raw_spin_lock(&dsq->lock); + + /* + * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't + * change underneath us. + */ + if (p->scx.holding_cpu < 0) { + /* @p must still be on @dsq, dequeue */ + WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); + task_unlink_from_dsq(p, dsq); + dsq_mod_nr(dsq, -1); + } else { + /* + * We're racing against dispatch_to_local_dsq() which already + * removed @p from @dsq and set @p->scx.holding_cpu. Clear the + * holding_cpu which tells dispatch_to_local_dsq() that it lost + * the race. + */ + WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); + p->scx.holding_cpu = -1; + } + p->scx.dsq = NULL; + + if (!is_local) + raw_spin_unlock(&dsq->lock); +} + +static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) +{ + return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); +} + +static struct scx_dispatch_q *find_non_local_dsq(u64 dsq_id) +{ + lockdep_assert(rcu_read_lock_any_held()); + + if (dsq_id == SCX_DSQ_GLOBAL) + return &scx_dsq_global; + else + return find_user_dsq(dsq_id); +} + +static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, + struct task_struct *p) +{ + struct scx_dispatch_q *dsq; + + if (dsq_id == SCX_DSQ_LOCAL) + return &rq->scx.local_dsq; + + dsq = find_non_local_dsq(dsq_id); + if (unlikely(!dsq)) { + scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", + dsq_id, p->comm, p->pid); + return &scx_dsq_global; + } + + return dsq; +} + +static void mark_direct_dispatch(struct task_struct *ddsp_task, + struct task_struct *p, u64 dsq_id, + u64 enq_flags) +{ + /* + * Mark that dispatch already happened from ops.select_cpu() or + * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value + * which can never match a valid task pointer. + */ + __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); + + /* @p must match the task on the enqueue path */ + if (unlikely(p != ddsp_task)) { + if (IS_ERR(ddsp_task)) + scx_ops_error("%s[%d] already direct-dispatched", + p->comm, p->pid); + else + scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", + ddsp_task->comm, ddsp_task->pid, + p->comm, p->pid); + return; + } + + WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); + WARN_ON_ONCE(p->scx.ddsp_enq_flags); + + p->scx.ddsp_dsq_id = dsq_id; + p->scx.ddsp_enq_flags = enq_flags; +} + +static void direct_dispatch(struct task_struct *p, u64 enq_flags) +{ + struct rq *rq = task_rq(p); + struct scx_dispatch_q *dsq; + u64 dsq_id = p->scx.ddsp_dsq_id; + + touch_core_sched_dispatch(rq, p); + + p->scx.ddsp_enq_flags |= enq_flags; + + /* + * We are in the enqueue path with @rq locked and pinned, and thus can't + * double lock a remote rq and enqueue to its local DSQ. For + * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer + * the enqueue so that it's executed when @rq can be unlocked. + */ + if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { + s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; + unsigned long opss; + + if (cpu == cpu_of(rq)) { + dsq_id = SCX_DSQ_LOCAL; + goto dispatch; + } + + opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_NONE: + break; + case SCX_OPSS_QUEUEING: + /* + * As @p was never passed to the BPF side, _release is + * not strictly necessary. Still do it for consistency. + */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + break; + default: + WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", + p->comm, p->pid, opss); + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + break; + } + + WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); + list_add_tail(&p->scx.dsq_list.node, + &rq->scx.ddsp_deferred_locals); + schedule_deferred(rq); + return; + } + +dispatch: + dsq = find_dsq_for_dispatch(rq, dsq_id, p); + dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); +} + +static bool scx_rq_online(struct rq *rq) +{ + return likely(rq->scx.flags & SCX_RQ_ONLINE); +} + +static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, + int sticky_cpu) +{ + struct task_struct **ddsp_taskp; + unsigned long qseq; + + WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); + + /* rq migration */ + if (sticky_cpu == cpu_of(rq)) + goto local_norefill; + + /* + * If !scx_rq_online(), we already told the BPF scheduler that the CPU + * is offline and are just running the hotplug path. Don't bother the + * BPF scheduler. + */ + if (!scx_rq_online(rq)) + goto local; + + if (scx_ops_bypassing()) { + if (enq_flags & SCX_ENQ_LAST) + goto local; + else + goto global; + } + + if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) + goto direct; + + /* see %SCX_OPS_ENQ_EXITING */ + if (!static_branch_unlikely(&scx_ops_enq_exiting) && + unlikely(p->flags & PF_EXITING)) + goto local; + + /* see %SCX_OPS_ENQ_LAST */ + if (!static_branch_unlikely(&scx_ops_enq_last) && + (enq_flags & SCX_ENQ_LAST)) + goto local; + + if (!SCX_HAS_OP(enqueue)) + goto global; + + /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ + qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; + + WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); + atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); + + ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); + WARN_ON_ONCE(*ddsp_taskp); + *ddsp_taskp = p; + + SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); + + *ddsp_taskp = NULL; + if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) + goto direct; + + /* + * If not directly dispatched, QUEUEING isn't clear yet and dispatch or + * dequeue may be waiting. The store_release matches their load_acquire. + */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); + return; + +direct: + direct_dispatch(p, enq_flags); + return; + +local: + /* + * For task-ordering, slice refill must be treated as implying the end + * of the current slice. Otherwise, the longer @p stays on the CPU, the + * higher priority it becomes from scx_prio_less()'s POV. + */ + touch_core_sched(rq, p); + p->scx.slice = SCX_SLICE_DFL; +local_norefill: + dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); + return; + +global: + touch_core_sched(rq, p); /* see the comment in local: */ + p->scx.slice = SCX_SLICE_DFL; + dispatch_enqueue(&scx_dsq_global, p, enq_flags); +} + +static bool task_runnable(const struct task_struct *p) +{ + return !list_empty(&p->scx.runnable_node); +} + +static void set_task_runnable(struct rq *rq, struct task_struct *p) +{ + lockdep_assert_rq_held(rq); + + if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { + p->scx.runnable_at = jiffies; + p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; + } + + /* + * list_add_tail() must be used. scx_ops_bypass() depends on tasks being + * appened to the runnable_list. + */ + list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); +} + +static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) +{ + list_del_init(&p->scx.runnable_node); + if (reset_runnable_at) + p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; +} + +static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) +{ + int sticky_cpu = p->scx.sticky_cpu; + + if (enq_flags & ENQUEUE_WAKEUP) + rq->scx.flags |= SCX_RQ_IN_WAKEUP; + + enq_flags |= rq->scx.extra_enq_flags; + + if (sticky_cpu >= 0) + p->scx.sticky_cpu = -1; + + /* + * Restoring a running task will be immediately followed by + * set_next_task_scx() which expects the task to not be on the BPF + * scheduler as tasks can only start running through local DSQs. Force + * direct-dispatch into the local DSQ by setting the sticky_cpu. + */ + if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) + sticky_cpu = cpu_of(rq); + + if (p->scx.flags & SCX_TASK_QUEUED) { + WARN_ON_ONCE(!task_runnable(p)); + goto out; + } + + set_task_runnable(rq, p); + p->scx.flags |= SCX_TASK_QUEUED; + rq->scx.nr_running++; + add_nr_running(rq, 1); + + if (SCX_HAS_OP(runnable)) + SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); + + if (enq_flags & SCX_ENQ_WAKEUP) + touch_core_sched(rq, p); + + do_enqueue_task(rq, p, enq_flags, sticky_cpu); +out: + rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; +} + +static void ops_dequeue(struct task_struct *p, u64 deq_flags) +{ + unsigned long opss; + + /* dequeue is always temporary, don't reset runnable_at */ + clr_task_runnable(p, false); + + /* acquire ensures that we see the preceding updates on QUEUED */ + opss = atomic_long_read_acquire(&p->scx.ops_state); + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_NONE: + break; + case SCX_OPSS_QUEUEING: + /* + * QUEUEING is started and finished while holding @p's rq lock. + * As we're holding the rq lock now, we shouldn't see QUEUEING. + */ + BUG(); + case SCX_OPSS_QUEUED: + if (SCX_HAS_OP(dequeue)) + SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); + + if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, + SCX_OPSS_NONE)) + break; + fallthrough; + case SCX_OPSS_DISPATCHING: + /* + * If @p is being dispatched from the BPF scheduler to a DSQ, + * wait for the transfer to complete so that @p doesn't get + * added to its DSQ after dequeueing is complete. + * + * As we're waiting on DISPATCHING with the rq locked, the + * dispatching side shouldn't try to lock the rq while + * DISPATCHING is set. See dispatch_to_local_dsq(). + * + * DISPATCHING shouldn't have qseq set and control can reach + * here with NONE @opss from the above QUEUED case block. + * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. + */ + wait_ops_state(p, SCX_OPSS_DISPATCHING); + BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); + break; + } +} + +static void dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) +{ + if (!(p->scx.flags & SCX_TASK_QUEUED)) { + WARN_ON_ONCE(task_runnable(p)); + return; + } + + ops_dequeue(p, deq_flags); + + /* + * A currently running task which is going off @rq first gets dequeued + * and then stops running. As we want running <-> stopping transitions + * to be contained within runnable <-> quiescent transitions, trigger + * ->stopping() early here instead of in put_prev_task_scx(). + * + * @p may go through multiple stopping <-> running transitions between + * here and put_prev_task_scx() if task attribute changes occur while + * balance_scx() leaves @rq unlocked. However, they don't contain any + * information meaningful to the BPF scheduler and can be suppressed by + * skipping the callbacks if the task is !QUEUED. + */ + if (SCX_HAS_OP(stopping) && task_current(rq, p)) { + update_curr_scx(rq); + SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); + } + + if (SCX_HAS_OP(quiescent)) + SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); + + if (deq_flags & SCX_DEQ_SLEEP) + p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; + else + p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; + + p->scx.flags &= ~SCX_TASK_QUEUED; + rq->scx.nr_running--; + sub_nr_running(rq, 1); + + dispatch_dequeue(rq, p); +} + +static void yield_task_scx(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + if (SCX_HAS_OP(yield)) + SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); + else + p->scx.slice = 0; +} + +static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) +{ + struct task_struct *from = rq->curr; + + if (SCX_HAS_OP(yield)) + return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); + else + return false; +} + +#ifdef CONFIG_SMP +/** + * move_task_to_local_dsq - Move a task from a different rq to a local DSQ + * @rq: rq to move the task into, currently locked + * @p: task to move + * @enq_flags: %SCX_ENQ_* + * + * Move @p which is currently on a different rq to @rq's local DSQ. The caller + * must: + * + * 1. Start with exclusive access to @p either through its DSQ lock or + * %SCX_OPSS_DISPATCHING flag. + * + * 2. Set @p->scx.holding_cpu to raw_smp_processor_id(). + * + * 3. Remember task_rq(@p). Release the exclusive access so that we don't + * deadlock with dequeue. + * + * 4. Lock @rq and the task_rq from #3. + * + * 5. Call this function. + * + * Returns %true if @p was successfully moved. %false after racing dequeue and + * losing. + */ +static bool move_task_to_local_dsq(struct rq *rq, struct task_struct *p, + u64 enq_flags) +{ + struct rq *task_rq; + + lockdep_assert_rq_held(rq); + + /* + * If dequeue got to @p while we were trying to lock both rq's, it'd + * have cleared @p->scx.holding_cpu to -1. While other cpus may have + * updated it to different values afterwards, as this operation can't be + * preempted or recurse, @p->scx.holding_cpu can never become + * raw_smp_processor_id() again before we're done. Thus, we can tell + * whether we lost to dequeue by testing whether @p->scx.holding_cpu is + * still raw_smp_processor_id(). + * + * See dispatch_dequeue() for the counterpart. + */ + if (unlikely(p->scx.holding_cpu != raw_smp_processor_id())) + return false; + + /* @p->rq couldn't have changed if we're still the holding cpu */ + task_rq = task_rq(p); + lockdep_assert_rq_held(task_rq); + + WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(rq), p->cpus_ptr)); + deactivate_task(task_rq, p, 0); + set_task_cpu(p, cpu_of(rq)); + p->scx.sticky_cpu = cpu_of(rq); + + /* + * We want to pass scx-specific enq_flags but activate_task() will + * truncate the upper 32 bit. As we own @rq, we can pass them through + * @rq->scx.extra_enq_flags instead. + */ + WARN_ON_ONCE(rq->scx.extra_enq_flags); + rq->scx.extra_enq_flags = enq_flags; + activate_task(rq, p, 0); + rq->scx.extra_enq_flags = 0; + + return true; +} + +/** + * dispatch_to_local_dsq_lock - Ensure source and destination rq's are locked + * @rq: current rq which is locked + * @src_rq: rq to move task from + * @dst_rq: rq to move task to + * + * We're holding @rq lock and trying to dispatch a task from @src_rq to + * @dst_rq's local DSQ and thus need to lock both @src_rq and @dst_rq. Whether + * @rq stays locked isn't important as long as the state is restored after + * dispatch_to_local_dsq_unlock(). + */ +static void dispatch_to_local_dsq_lock(struct rq *rq, struct rq *src_rq, + struct rq *dst_rq) +{ + if (src_rq == dst_rq) { + raw_spin_rq_unlock(rq); + raw_spin_rq_lock(dst_rq); + } else if (rq == src_rq) { + double_lock_balance(rq, dst_rq); + } else if (rq == dst_rq) { + double_lock_balance(rq, src_rq); + } else { + raw_spin_rq_unlock(rq); + double_rq_lock(src_rq, dst_rq); + } +} + +/** + * dispatch_to_local_dsq_unlock - Undo dispatch_to_local_dsq_lock() + * @rq: current rq which is locked + * @src_rq: rq to move task from + * @dst_rq: rq to move task to + * + * Unlock @src_rq and @dst_rq and ensure that @rq is locked on return. + */ +static void dispatch_to_local_dsq_unlock(struct rq *rq, struct rq *src_rq, + struct rq *dst_rq) +{ + if (src_rq == dst_rq) { + raw_spin_rq_unlock(dst_rq); + raw_spin_rq_lock(rq); + } else if (rq == src_rq) { + double_unlock_balance(rq, dst_rq); + } else if (rq == dst_rq) { + double_unlock_balance(rq, src_rq); + } else { + double_rq_unlock(src_rq, dst_rq); + raw_spin_rq_lock(rq); + } +} +#endif /* CONFIG_SMP */ + +static void consume_local_task(struct rq *rq, struct scx_dispatch_q *dsq, + struct task_struct *p) +{ + lockdep_assert_held(&dsq->lock); /* released on return */ + + /* @dsq is locked and @p is on this rq */ + WARN_ON_ONCE(p->scx.holding_cpu >= 0); + task_unlink_from_dsq(p, dsq); + list_add_tail(&p->scx.dsq_list.node, &rq->scx.local_dsq.list); + dsq_mod_nr(dsq, -1); + dsq_mod_nr(&rq->scx.local_dsq, 1); + p->scx.dsq = &rq->scx.local_dsq; + raw_spin_unlock(&dsq->lock); +} + +#ifdef CONFIG_SMP +/* + * Similar to kernel/sched/core.c::is_cpu_allowed() but we're testing whether @p + * can be pulled to @rq. + */ +static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) +{ + int cpu = cpu_of(rq); + + if (!cpumask_test_cpu(cpu, p->cpus_ptr)) + return false; + if (unlikely(is_migration_disabled(p))) + return false; + if (!(p->flags & PF_KTHREAD) && unlikely(!task_cpu_possible(cpu, p))) + return false; + if (!scx_rq_online(rq)) + return false; + return true; +} + +static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, + struct task_struct *p, struct rq *task_rq) +{ + bool moved = false; + + lockdep_assert_held(&dsq->lock); /* released on return */ + + /* + * @dsq is locked and @p is on a remote rq. @p is currently protected by + * @dsq->lock. We want to pull @p to @rq but may deadlock if we grab + * @task_rq while holding @dsq and @rq locks. As dequeue can't drop the + * rq lock or fail, do a little dancing from our side. See + * move_task_to_local_dsq(). + */ + WARN_ON_ONCE(p->scx.holding_cpu >= 0); + task_unlink_from_dsq(p, dsq); + dsq_mod_nr(dsq, -1); + p->scx.holding_cpu = raw_smp_processor_id(); + raw_spin_unlock(&dsq->lock); + + double_lock_balance(rq, task_rq); + + moved = move_task_to_local_dsq(rq, p, 0); + + double_unlock_balance(rq, task_rq); + + return moved; +} +#else /* CONFIG_SMP */ +static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq) { return false; } +static bool consume_remote_task(struct rq *rq, struct scx_dispatch_q *dsq, + struct task_struct *p, struct rq *task_rq) { return false; } +#endif /* CONFIG_SMP */ + +static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) +{ + struct task_struct *p; +retry: + /* + * The caller can't expect to successfully consume a task if the task's + * addition to @dsq isn't guaranteed to be visible somehow. Test + * @dsq->list without locking and skip if it seems empty. + */ + if (list_empty(&dsq->list)) + return false; + + raw_spin_lock(&dsq->lock); + + nldsq_for_each_task(p, dsq) { + struct rq *task_rq = task_rq(p); + + if (rq == task_rq) { + consume_local_task(rq, dsq, p); + return true; + } + + if (task_can_run_on_remote_rq(p, rq)) { + if (likely(consume_remote_task(rq, dsq, p, task_rq))) + return true; + goto retry; + } + } + + raw_spin_unlock(&dsq->lock); + return false; +} + +enum dispatch_to_local_dsq_ret { + DTL_DISPATCHED, /* successfully dispatched */ + DTL_LOST, /* lost race to dequeue */ + DTL_NOT_LOCAL, /* destination is not a local DSQ */ + DTL_INVALID, /* invalid local dsq_id */ +}; + +/** + * dispatch_to_local_dsq - Dispatch a task to a local dsq + * @rq: current rq which is locked + * @dsq_id: destination dsq ID + * @p: task to dispatch + * @enq_flags: %SCX_ENQ_* + * + * We're holding @rq lock and want to dispatch @p to the local DSQ identified by + * @dsq_id. This function performs all the synchronization dancing needed + * because local DSQs are protected with rq locks. + * + * The caller must have exclusive ownership of @p (e.g. through + * %SCX_OPSS_DISPATCHING). + */ +static enum dispatch_to_local_dsq_ret +dispatch_to_local_dsq(struct rq *rq, u64 dsq_id, struct task_struct *p, + u64 enq_flags) +{ + struct rq *src_rq = task_rq(p); + struct rq *dst_rq; + + /* + * We're synchronized against dequeue through DISPATCHING. As @p can't + * be dequeued, its task_rq and cpus_allowed are stable too. + */ + if (dsq_id == SCX_DSQ_LOCAL) { + dst_rq = rq; + } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { + s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; + + if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) + return DTL_INVALID; + dst_rq = cpu_rq(cpu); + } else { + return DTL_NOT_LOCAL; + } + + /* if dispatching to @rq that @p is already on, no lock dancing needed */ + if (rq == src_rq && rq == dst_rq) { + dispatch_enqueue(&dst_rq->scx.local_dsq, p, + enq_flags | SCX_ENQ_CLEAR_OPSS); + return DTL_DISPATCHED; + } + +#ifdef CONFIG_SMP + if (cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)) { + struct rq *locked_dst_rq = dst_rq; + bool dsp; + + /* + * @p is on a possibly remote @src_rq which we need to lock to + * move the task. If dequeue is in progress, it'd be locking + * @src_rq and waiting on DISPATCHING, so we can't grab @src_rq + * lock while holding DISPATCHING. + * + * As DISPATCHING guarantees that @p is wholly ours, we can + * pretend that we're moving from a DSQ and use the same + * mechanism - mark the task under transfer with holding_cpu, + * release DISPATCHING and then follow the same protocol. + */ + p->scx.holding_cpu = raw_smp_processor_id(); + + /* store_release ensures that dequeue sees the above */ + atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); + + dispatch_to_local_dsq_lock(rq, src_rq, locked_dst_rq); + + /* + * We don't require the BPF scheduler to avoid dispatching to + * offline CPUs mostly for convenience but also because CPUs can + * go offline between scx_bpf_dispatch() calls and here. If @p + * is destined to an offline CPU, queue it on its current CPU + * instead, which should always be safe. As this is an allowed + * behavior, don't trigger an ops error. + */ + if (!scx_rq_online(dst_rq)) + dst_rq = src_rq; + + if (src_rq == dst_rq) { + /* + * As @p is staying on the same rq, there's no need to + * go through the full deactivate/activate cycle. + * Optimize by abbreviating the operations in + * move_task_to_local_dsq(). + */ + dsp = p->scx.holding_cpu == raw_smp_processor_id(); + if (likely(dsp)) { + p->scx.holding_cpu = -1; + dispatch_enqueue(&dst_rq->scx.local_dsq, p, + enq_flags); + } + } else { + dsp = move_task_to_local_dsq(dst_rq, p, enq_flags); + } + + /* if the destination CPU is idle, wake it up */ + if (dsp && sched_class_above(p->sched_class, + dst_rq->curr->sched_class)) + resched_curr(dst_rq); + + dispatch_to_local_dsq_unlock(rq, src_rq, locked_dst_rq); + + return dsp ? DTL_DISPATCHED : DTL_LOST; + } +#endif /* CONFIG_SMP */ + + scx_ops_error("SCX_DSQ_LOCAL[_ON] verdict target cpu %d not allowed for %s[%d]", + cpu_of(dst_rq), p->comm, p->pid); + return DTL_INVALID; +} + +/** + * finish_dispatch - Asynchronously finish dispatching a task + * @rq: current rq which is locked + * @p: task to finish dispatching + * @qseq_at_dispatch: qseq when @p started getting dispatched + * @dsq_id: destination DSQ ID + * @enq_flags: %SCX_ENQ_* + * + * Dispatching to local DSQs may need to wait for queueing to complete or + * require rq lock dancing. As we don't wanna do either while inside + * ops.dispatch() to avoid locking order inversion, we split dispatching into + * two parts. scx_bpf_dispatch() which is called by ops.dispatch() records the + * task and its qseq. Once ops.dispatch() returns, this function is called to + * finish up. + * + * There is no guarantee that @p is still valid for dispatching or even that it + * was valid in the first place. Make sure that the task is still owned by the + * BPF scheduler and claim the ownership before dispatching. + */ +static void finish_dispatch(struct rq *rq, struct task_struct *p, + unsigned long qseq_at_dispatch, + u64 dsq_id, u64 enq_flags) +{ + struct scx_dispatch_q *dsq; + unsigned long opss; + + touch_core_sched_dispatch(rq, p); +retry: + /* + * No need for _acquire here. @p is accessed only after a successful + * try_cmpxchg to DISPATCHING. + */ + opss = atomic_long_read(&p->scx.ops_state); + + switch (opss & SCX_OPSS_STATE_MASK) { + case SCX_OPSS_DISPATCHING: + case SCX_OPSS_NONE: + /* someone else already got to it */ + return; + case SCX_OPSS_QUEUED: + /* + * If qseq doesn't match, @p has gone through at least one + * dispatch/dequeue and re-enqueue cycle between + * scx_bpf_dispatch() and here and we have no claim on it. + */ + if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) + return; + + /* + * While we know @p is accessible, we don't yet have a claim on + * it - the BPF scheduler is allowed to dispatch tasks + * spuriously and there can be a racing dequeue attempt. Let's + * claim @p by atomically transitioning it from QUEUED to + * DISPATCHING. + */ + if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, + SCX_OPSS_DISPATCHING))) + break; + goto retry; + case SCX_OPSS_QUEUEING: + /* + * do_enqueue_task() is in the process of transferring the task + * to the BPF scheduler while holding @p's rq lock. As we aren't + * holding any kernel or BPF resource that the enqueue path may + * depend upon, it's safe to wait. + */ + wait_ops_state(p, opss); + goto retry; + } + + BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); + + switch (dispatch_to_local_dsq(rq, dsq_id, p, enq_flags)) { + case DTL_DISPATCHED: + break; + case DTL_LOST: + break; + case DTL_INVALID: + dsq_id = SCX_DSQ_GLOBAL; + fallthrough; + case DTL_NOT_LOCAL: + dsq = find_dsq_for_dispatch(cpu_rq(raw_smp_processor_id()), + dsq_id, p); + dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); + break; + } +} + +static void flush_dispatch_buf(struct rq *rq) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + u32 u; + + for (u = 0; u < dspc->cursor; u++) { + struct scx_dsp_buf_ent *ent = &dspc->buf[u]; + + finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, + ent->enq_flags); + } + + dspc->nr_tasks += dspc->cursor; + dspc->cursor = 0; +} + +static int balance_one(struct rq *rq, struct task_struct *prev, bool local) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + bool prev_on_scx = prev->sched_class == &ext_sched_class; + int nr_loops = SCX_DSP_MAX_LOOPS; + bool has_tasks = false; + + lockdep_assert_rq_held(rq); + rq->scx.flags |= SCX_RQ_IN_BALANCE; + + if (static_branch_unlikely(&scx_ops_cpu_preempt) && + unlikely(rq->scx.cpu_released)) { + /* + * If the previous sched_class for the current CPU was not SCX, + * notify the BPF scheduler that it again has control of the + * core. This callback complements ->cpu_release(), which is + * emitted in scx_next_task_picked(). + */ + if (SCX_HAS_OP(cpu_acquire)) + SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL); + rq->scx.cpu_released = false; + } + + if (prev_on_scx) { + WARN_ON_ONCE(local && (prev->scx.flags & SCX_TASK_BAL_KEEP)); + update_curr_scx(rq); + + /* + * If @prev is runnable & has slice left, it has priority and + * fetching more just increases latency for the fetched tasks. + * Tell put_prev_task_scx() to put @prev on local_dsq. If the + * BPF scheduler wants to handle this explicitly, it should + * implement ->cpu_released(). + * + * See scx_ops_disable_workfn() for the explanation on the + * bypassing test. + * + * When balancing a remote CPU for core-sched, there won't be a + * following put_prev_task_scx() call and we don't own + * %SCX_TASK_BAL_KEEP. Instead, pick_task_scx() will test the + * same conditions later and pick @rq->curr accordingly. + */ + if ((prev->scx.flags & SCX_TASK_QUEUED) && + prev->scx.slice && !scx_ops_bypassing()) { + if (local) + prev->scx.flags |= SCX_TASK_BAL_KEEP; + goto has_tasks; + } + } + + /* if there already are tasks to run, nothing to do */ + if (rq->scx.local_dsq.nr) + goto has_tasks; + + if (consume_dispatch_q(rq, &scx_dsq_global)) + goto has_tasks; + + if (!SCX_HAS_OP(dispatch) || scx_ops_bypassing() || !scx_rq_online(rq)) + goto out; + + dspc->rq = rq; + + /* + * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, + * the local DSQ might still end up empty after a successful + * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() + * produced some tasks, retry. The BPF scheduler may depend on this + * looping behavior to simplify its implementation. + */ + do { + dspc->nr_tasks = 0; + + SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), + prev_on_scx ? prev : NULL); + + flush_dispatch_buf(rq); + + if (rq->scx.local_dsq.nr) + goto has_tasks; + if (consume_dispatch_q(rq, &scx_dsq_global)) + goto has_tasks; + + /* + * ops.dispatch() can trap us in this loop by repeatedly + * dispatching ineligible tasks. Break out once in a while to + * allow the watchdog to run. As IRQ can't be enabled in + * balance(), we want to complete this scheduling cycle and then + * start a new one. IOW, we want to call resched_curr() on the + * next, most likely idle, task, not the current one. Use + * scx_bpf_kick_cpu() for deferred kicking. + */ + if (unlikely(!--nr_loops)) { + scx_bpf_kick_cpu(cpu_of(rq), 0); + break; + } + } while (dspc->nr_tasks); + + goto out; + +has_tasks: + has_tasks = true; +out: + rq->scx.flags &= ~SCX_RQ_IN_BALANCE; + return has_tasks; +} + +#ifdef CONFIG_SMP +static int balance_scx(struct rq *rq, struct task_struct *prev, + struct rq_flags *rf) +{ + int ret; + + rq_unpin_lock(rq, rf); + + ret = balance_one(rq, prev, true); + +#ifdef CONFIG_SCHED_SMT + /* + * When core-sched is enabled, this ops.balance() call will be followed + * by put_prev_scx() and pick_task_scx() on this CPU and pick_task_scx() + * on the SMT siblings. Balance the siblings too. + */ + if (sched_core_enabled(rq)) { + const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); + int scpu; + + for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { + struct rq *srq = cpu_rq(scpu); + struct task_struct *sprev = srq->curr; + + WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); + update_rq_clock(srq); + balance_one(srq, sprev, false); + } + } +#endif + rq_repin_lock(rq, rf); + + return ret; +} +#endif + +static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) +{ + if (p->scx.flags & SCX_TASK_QUEUED) { + /* + * Core-sched might decide to execute @p before it is + * dispatched. Call ops_dequeue() to notify the BPF scheduler. + */ + ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); + dispatch_dequeue(rq, p); + } + + p->se.exec_start = rq_clock_task(rq); + + /* see dequeue_task_scx() on why we skip when !QUEUED */ + if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) + SCX_CALL_OP_TASK(SCX_KF_REST, running, p); + + clr_task_runnable(p, true); + + /* + * @p is getting newly scheduled or got kicked after someone updated its + * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). + */ + if ((p->scx.slice == SCX_SLICE_INF) != + (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { + if (p->scx.slice == SCX_SLICE_INF) + rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; + else + rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; + + sched_update_tick_dependency(rq); + + /* + * For now, let's refresh the load_avgs just when transitioning + * in and out of nohz. In the future, we might want to add a + * mechanism which calls the following periodically on + * tick-stopped CPUs. + */ + update_other_load_avgs(rq); + } +} + +static void process_ddsp_deferred_locals(struct rq *rq) +{ + struct task_struct *p, *tmp; + + lockdep_assert_rq_held(rq); + + /* + * Now that @rq can be unlocked, execute the deferred enqueueing of + * tasks directly dispatched to the local DSQs of other CPUs. See + * direct_dispatch(). + */ + list_for_each_entry_safe(p, tmp, &rq->scx.ddsp_deferred_locals, + scx.dsq_list.node) { + s32 ret; + + list_del_init(&p->scx.dsq_list.node); + + ret = dispatch_to_local_dsq(rq, p->scx.ddsp_dsq_id, p, + p->scx.ddsp_enq_flags); + WARN_ON_ONCE(ret == DTL_NOT_LOCAL); + } +} + +static void put_prev_task_scx(struct rq *rq, struct task_struct *p) +{ +#ifndef CONFIG_SMP + /* + * UP workaround. + * + * Because SCX may transfer tasks across CPUs during dispatch, dispatch + * is performed from its balance operation which isn't called in UP. + * Let's work around by calling it from the operations which come right + * after. + * + * 1. If the prev task is on SCX, pick_next_task() calls + * .put_prev_task() right after. As .put_prev_task() is also called + * from other places, we need to distinguish the calls which can be + * done by looking at the previous task's state - if still queued or + * dequeued with %SCX_DEQ_SLEEP, the caller must be pick_next_task(). + * This case is handled here. + * + * 2. If the prev task is not on SCX, the first following call into SCX + * will be .pick_next_task(), which is covered by calling + * balance_scx() from pick_next_task_scx(). + * + * Note that we can't merge the first case into the second as + * balance_scx() must be called before the previous SCX task goes + * through put_prev_task_scx(). + * + * @rq is pinned and can't be unlocked. As UP doesn't transfer tasks + * around, balance_one() doesn't need to. + */ + if (p->scx.flags & (SCX_TASK_QUEUED | SCX_TASK_DEQD_FOR_SLEEP)) + balance_one(rq, p, true); +#endif + + update_curr_scx(rq); + + /* see dequeue_task_scx() on why we skip when !QUEUED */ + if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) + SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); + + /* + * If we're being called from put_prev_task_balance(), balance_scx() may + * have decided that @p should keep running. + */ + if (p->scx.flags & SCX_TASK_BAL_KEEP) { + p->scx.flags &= ~SCX_TASK_BAL_KEEP; + set_task_runnable(rq, p); + dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); + return; + } + + if (p->scx.flags & SCX_TASK_QUEUED) { + set_task_runnable(rq, p); + + /* + * If @p has slice left and balance_scx() didn't tag it for + * keeping, @p is getting preempted by a higher priority + * scheduler class or core-sched forcing a different task. Leave + * it at the head of the local DSQ. + */ + if (p->scx.slice && !scx_ops_bypassing()) { + dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); + return; + } + + /* + * If we're in the pick_next_task path, balance_scx() should + * have already populated the local DSQ if there are any other + * available tasks. If empty, tell ops.enqueue() that @p is the + * only one available for this cpu. ops.enqueue() should put it + * on the local DSQ so that the subsequent pick_next_task_scx() + * can find the task unless it wants to trigger a separate + * follow-up scheduling event. + */ + if (list_empty(&rq->scx.local_dsq.list)) + do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); + else + do_enqueue_task(rq, p, 0, -1); + } +} + +static struct task_struct *first_local_task(struct rq *rq) +{ + return list_first_entry_or_null(&rq->scx.local_dsq.list, + struct task_struct, scx.dsq_list.node); +} + +static struct task_struct *pick_next_task_scx(struct rq *rq) +{ + struct task_struct *p; + +#ifndef CONFIG_SMP + /* UP workaround - see the comment at the head of put_prev_task_scx() */ + if (unlikely(rq->curr->sched_class != &ext_sched_class)) + balance_one(rq, rq->curr, true); +#endif + + p = first_local_task(rq); + if (!p) + return NULL; + + set_next_task_scx(rq, p, true); + + if (unlikely(!p->scx.slice)) { + if (!scx_ops_bypassing() && !scx_warned_zero_slice) { + printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in pick_next_task_scx()\n", + p->comm, p->pid); + scx_warned_zero_slice = true; + } + p->scx.slice = SCX_SLICE_DFL; + } + + return p; +} + +#ifdef CONFIG_SCHED_CORE +/** + * scx_prio_less - Task ordering for core-sched + * @a: task A + * @b: task B + * + * Core-sched is implemented as an additional scheduling layer on top of the + * usual sched_class'es and needs to find out the expected task ordering. For + * SCX, core-sched calls this function to interrogate the task ordering. + * + * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used + * to implement the default task ordering. The older the timestamp, the higher + * prority the task - the global FIFO ordering matching the default scheduling + * behavior. + * + * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to + * implement FIFO ordering within each local DSQ. See pick_task_scx(). + */ +bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, + bool in_fi) +{ + /* + * The const qualifiers are dropped from task_struct pointers when + * calling ops.core_sched_before(). Accesses are controlled by the + * verifier. + */ + if (SCX_HAS_OP(core_sched_before) && !scx_ops_bypassing()) + return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, + (struct task_struct *)a, + (struct task_struct *)b); + else + return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); +} + +/** + * pick_task_scx - Pick a candidate task for core-sched + * @rq: rq to pick the candidate task from + * + * Core-sched calls this function on each SMT sibling to determine the next + * tasks to run on the SMT siblings. balance_one() has been called on all + * siblings and put_prev_task_scx() has been called only for the current CPU. + * + * As put_prev_task_scx() hasn't been called on remote CPUs, we can't just look + * at the first task in the local dsq. @rq->curr has to be considered explicitly + * to mimic %SCX_TASK_BAL_KEEP. + */ +static struct task_struct *pick_task_scx(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct task_struct *first = first_local_task(rq); + + if (curr->scx.flags & SCX_TASK_QUEUED) { + /* is curr the only runnable task? */ + if (!first) + return curr; + + /* + * Does curr trump first? We can always go by core_sched_at for + * this comparison as it represents global FIFO ordering when + * the default core-sched ordering is used and local-DSQ FIFO + * ordering otherwise. + * + * We can have a task with an earlier timestamp on the DSQ. For + * example, when a current task is preempted by a sibling + * picking a different cookie, the task would be requeued at the + * head of the local DSQ with an earlier timestamp than the + * core-sched picked next task. Besides, the BPF scheduler may + * dispatch any tasks to the local DSQ anytime. + */ + if (curr->scx.slice && time_before64(curr->scx.core_sched_at, + first->scx.core_sched_at)) + return curr; + } + + return first; /* this may be %NULL */ +} +#endif /* CONFIG_SCHED_CORE */ + +static enum scx_cpu_preempt_reason +preempt_reason_from_class(const struct sched_class *class) +{ +#ifdef CONFIG_SMP + if (class == &stop_sched_class) + return SCX_CPU_PREEMPT_STOP; +#endif + if (class == &dl_sched_class) + return SCX_CPU_PREEMPT_DL; + if (class == &rt_sched_class) + return SCX_CPU_PREEMPT_RT; + return SCX_CPU_PREEMPT_UNKNOWN; +} + +static void switch_class_scx(struct rq *rq, struct task_struct *next) +{ + const struct sched_class *next_class = next->sched_class; + + if (!scx_enabled()) + return; +#ifdef CONFIG_SMP + /* + * Pairs with the smp_load_acquire() issued by a CPU in + * kick_cpus_irq_workfn() who is waiting for this CPU to perform a + * resched. + */ + smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); +#endif + if (!static_branch_unlikely(&scx_ops_cpu_preempt)) + return; + + /* + * The callback is conceptually meant to convey that the CPU is no + * longer under the control of SCX. Therefore, don't invoke the callback + * if the next class is below SCX (in which case the BPF scheduler has + * actively decided not to schedule any tasks on the CPU). + */ + if (sched_class_above(&ext_sched_class, next_class)) + return; + + /* + * At this point we know that SCX was preempted by a higher priority + * sched_class, so invoke the ->cpu_release() callback if we have not + * done so already. We only send the callback once between SCX being + * preempted, and it regaining control of the CPU. + * + * ->cpu_release() complements ->cpu_acquire(), which is emitted the + * next time that balance_scx() is invoked. + */ + if (!rq->scx.cpu_released) { + if (SCX_HAS_OP(cpu_release)) { + struct scx_cpu_release_args args = { + .reason = preempt_reason_from_class(next_class), + .task = next, + }; + + SCX_CALL_OP(SCX_KF_CPU_RELEASE, + cpu_release, cpu_of(rq), &args); + } + rq->scx.cpu_released = true; + } +} + +#ifdef CONFIG_SMP + +static bool test_and_clear_cpu_idle(int cpu) +{ +#ifdef CONFIG_SCHED_SMT + /* + * SMT mask should be cleared whether we can claim @cpu or not. The SMT + * cluster is not wholly idle either way. This also prevents + * scx_pick_idle_cpu() from getting caught in an infinite loop. + */ + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + + /* + * If offline, @cpu is not its own sibling and + * scx_pick_idle_cpu() can get caught in an infinite loop as + * @cpu is never cleared from idle_masks.smt. Ensure that @cpu + * is eventually cleared. + */ + if (cpumask_intersects(smt, idle_masks.smt)) + cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); + else if (cpumask_test_cpu(cpu, idle_masks.smt)) + __cpumask_clear_cpu(cpu, idle_masks.smt); + } +#endif + return cpumask_test_and_clear_cpu(cpu, idle_masks.cpu); +} + +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) +{ + int cpu; + +retry: + if (sched_smt_active()) { + cpu = cpumask_any_and_distribute(idle_masks.smt, cpus_allowed); + if (cpu < nr_cpu_ids) + goto found; + + if (flags & SCX_PICK_IDLE_CORE) + return -EBUSY; + } + + cpu = cpumask_any_and_distribute(idle_masks.cpu, cpus_allowed); + if (cpu >= nr_cpu_ids) + return -EBUSY; + +found: + if (test_and_clear_cpu_idle(cpu)) + return cpu; + else + goto retry; +} + +static s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, + u64 wake_flags, bool *found) +{ + s32 cpu; + + *found = false; + + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return prev_cpu; + } + + /* + * If WAKE_SYNC, the waker's local DSQ is empty, and the system is + * under utilized, wake up @p to the local DSQ of the waker. Checking + * only for an empty local DSQ is insufficient as it could give the + * wakee an unfair advantage when the system is oversaturated. + * Checking only for the presence of idle CPUs is also insufficient as + * the local DSQ of the waker could have tasks piled up on it even if + * there is an idle core elsewhere on the system. + */ + cpu = smp_processor_id(); + if ((wake_flags & SCX_WAKE_SYNC) && p->nr_cpus_allowed > 1 && + !cpumask_empty(idle_masks.cpu) && !(current->flags & PF_EXITING) && + cpu_rq(cpu)->scx.local_dsq.nr == 0) { + if (cpumask_test_cpu(cpu, p->cpus_ptr)) + goto cpu_found; + } + + if (p->nr_cpus_allowed == 1) { + if (test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } else { + return prev_cpu; + } + } + + /* + * If CPU has SMT, any wholly idle CPU is likely a better pick than + * partially idle @prev_cpu. + */ + if (sched_smt_active()) { + if (cpumask_test_cpu(prev_cpu, idle_masks.smt) && + test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } + + cpu = scx_pick_idle_cpu(p->cpus_ptr, SCX_PICK_IDLE_CORE); + if (cpu >= 0) + goto cpu_found; + } + + if (test_and_clear_cpu_idle(prev_cpu)) { + cpu = prev_cpu; + goto cpu_found; + } + + cpu = scx_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + goto cpu_found; + + return prev_cpu; + +cpu_found: + *found = true; + return cpu; +} + +static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) +{ + /* + * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it + * can be a good migration opportunity with low cache and memory + * footprint. Returning a CPU different than @prev_cpu triggers + * immediate rq migration. However, for SCX, as the current rq + * association doesn't dictate where the task is going to run, this + * doesn't fit well. If necessary, we can later add a dedicated method + * which can decide to preempt self to force it through the regular + * scheduling path. + */ + if (unlikely(wake_flags & WF_EXEC)) + return prev_cpu; + + if (SCX_HAS_OP(select_cpu)) { + s32 cpu; + struct task_struct **ddsp_taskp; + + ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); + WARN_ON_ONCE(*ddsp_taskp); + *ddsp_taskp = p; + + cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, + select_cpu, p, prev_cpu, wake_flags); + *ddsp_taskp = NULL; + if (ops_cpu_valid(cpu, "from ops.select_cpu()")) + return cpu; + else + return prev_cpu; + } else { + bool found; + s32 cpu; + + cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); + if (found) { + p->scx.slice = SCX_SLICE_DFL; + p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; + } + return cpu; + } +} + +static void task_woken_scx(struct rq *rq, struct task_struct *p) +{ + run_deferred(rq); +} + +static void set_cpus_allowed_scx(struct task_struct *p, + struct affinity_context *ac) +{ + set_cpus_allowed_common(p, ac); + + /* + * The effective cpumask is stored in @p->cpus_ptr which may temporarily + * differ from the configured one in @p->cpus_mask. Always tell the bpf + * scheduler the effective one. + * + * Fine-grained memory write control is enforced by BPF making the const + * designation pointless. Cast it away when calling the operation. + */ + if (SCX_HAS_OP(set_cpumask)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, + (struct cpumask *)p->cpus_ptr); +} + +static void reset_idle_masks(void) +{ + /* + * Consider all online cpus idle. Should converge to the actual state + * quickly. + */ + cpumask_copy(idle_masks.cpu, cpu_online_mask); + cpumask_copy(idle_masks.smt, cpu_online_mask); +} + +void __scx_update_idle(struct rq *rq, bool idle) +{ + int cpu = cpu_of(rq); + + if (SCX_HAS_OP(update_idle)) { + SCX_CALL_OP(SCX_KF_REST, update_idle, cpu_of(rq), idle); + if (!static_branch_unlikely(&scx_builtin_idle_enabled)) + return; + } + + if (idle) + cpumask_set_cpu(cpu, idle_masks.cpu); + else + cpumask_clear_cpu(cpu, idle_masks.cpu); + +#ifdef CONFIG_SCHED_SMT + if (sched_smt_active()) { + const struct cpumask *smt = cpu_smt_mask(cpu); + + if (idle) { + /* + * idle_masks.smt handling is racy but that's fine as + * it's only for optimization and self-correcting. + */ + for_each_cpu(cpu, smt) { + if (!cpumask_test_cpu(cpu, idle_masks.cpu)) + return; + } + cpumask_or(idle_masks.smt, idle_masks.smt, smt); + } else { + cpumask_andnot(idle_masks.smt, idle_masks.smt, smt); + } + } +#endif +} + +static void handle_hotplug(struct rq *rq, bool online) +{ + int cpu = cpu_of(rq); + + atomic_long_inc(&scx_hotplug_seq); + + if (online && SCX_HAS_OP(cpu_online)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); + else if (!online && SCX_HAS_OP(cpu_offline)) + SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); + else + scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, + "cpu %d going %s, exiting scheduler", cpu, + online ? "online" : "offline"); +} + +void scx_rq_activate(struct rq *rq) +{ + handle_hotplug(rq, true); +} + +void scx_rq_deactivate(struct rq *rq) +{ + handle_hotplug(rq, false); +} + +static void rq_online_scx(struct rq *rq) +{ + rq->scx.flags |= SCX_RQ_ONLINE; +} + +static void rq_offline_scx(struct rq *rq) +{ + rq->scx.flags &= ~SCX_RQ_ONLINE; +} + +#else /* CONFIG_SMP */ + +static bool test_and_clear_cpu_idle(int cpu) { return false; } +static s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, u64 flags) { return -EBUSY; } +static void reset_idle_masks(void) {} + +#endif /* CONFIG_SMP */ + +static bool check_rq_for_timeouts(struct rq *rq) +{ + struct task_struct *p; + struct rq_flags rf; + bool timed_out = false; + + rq_lock_irqsave(rq, &rf); + list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { + unsigned long last_runnable = p->scx.runnable_at; + + if (unlikely(time_after(jiffies, + last_runnable + scx_watchdog_timeout))) { + u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); + + scx_ops_error_kind(SCX_EXIT_ERROR_STALL, + "%s[%d] failed to run for %u.%03us", + p->comm, p->pid, + dur_ms / 1000, dur_ms % 1000); + timed_out = true; + break; + } + } + rq_unlock_irqrestore(rq, &rf); + + return timed_out; +} + +static void scx_watchdog_workfn(struct work_struct *work) +{ + int cpu; + + WRITE_ONCE(scx_watchdog_timestamp, jiffies); + + for_each_online_cpu(cpu) { + if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) + break; + + cond_resched(); + } + queue_delayed_work(system_unbound_wq, to_delayed_work(work), + scx_watchdog_timeout / 2); +} + +void scx_tick(struct rq *rq) +{ + unsigned long last_check; + + if (!scx_enabled()) + return; + + last_check = READ_ONCE(scx_watchdog_timestamp); + if (unlikely(time_after(jiffies, + last_check + READ_ONCE(scx_watchdog_timeout)))) { + u32 dur_ms = jiffies_to_msecs(jiffies - last_check); + + scx_ops_error_kind(SCX_EXIT_ERROR_STALL, + "watchdog failed to check in for %u.%03us", + dur_ms / 1000, dur_ms % 1000); + } + + update_other_load_avgs(rq); +} + +static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) +{ + update_curr_scx(rq); + + /* + * While disabling, always resched and refresh core-sched timestamp as + * we can't trust the slice management or ops.core_sched_before(). + */ + if (scx_ops_bypassing()) { + curr->scx.slice = 0; + touch_core_sched(rq, curr); + } else if (SCX_HAS_OP(tick)) { + SCX_CALL_OP(SCX_KF_REST, tick, curr); + } + + if (!curr->scx.slice) + resched_curr(rq); +} + +static enum scx_task_state scx_get_task_state(const struct task_struct *p) +{ + return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; +} + +static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) +{ + enum scx_task_state prev_state = scx_get_task_state(p); + bool warn = false; + + BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); + + switch (state) { + case SCX_TASK_NONE: + break; + case SCX_TASK_INIT: + warn = prev_state != SCX_TASK_NONE; + break; + case SCX_TASK_READY: + warn = prev_state == SCX_TASK_NONE; + break; + case SCX_TASK_ENABLED: + warn = prev_state != SCX_TASK_READY; + break; + default: + warn = true; + return; + } + + WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", + prev_state, state, p->comm, p->pid); + + p->scx.flags &= ~SCX_TASK_STATE_MASK; + p->scx.flags |= state << SCX_TASK_STATE_SHIFT; +} + +static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) +{ + int ret; + + p->scx.disallow = false; + + if (SCX_HAS_OP(init_task)) { + struct scx_init_task_args args = { + .fork = fork, + }; + + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); + if (unlikely(ret)) { + ret = ops_sanitize_err("init_task", ret); + return ret; + } + } + + scx_set_task_state(p, SCX_TASK_INIT); + + if (p->scx.disallow) { + struct rq *rq; + struct rq_flags rf; + + rq = task_rq_lock(p, &rf); + + /* + * We're either in fork or load path and @p->policy will be + * applied right after. Reverting @p->policy here and rejecting + * %SCHED_EXT transitions from scx_check_setscheduler() + * guarantees that if ops.init_task() sets @p->disallow, @p can + * never be in SCX. + */ + if (p->policy == SCHED_EXT) { + p->policy = SCHED_NORMAL; + atomic_long_inc(&scx_nr_rejected); + } + + task_rq_unlock(rq, p, &rf); + } + + p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; + return 0; +} + +static void scx_ops_enable_task(struct task_struct *p) +{ + u32 weight; + + lockdep_assert_rq_held(task_rq(p)); + + /* + * Set the weight before calling ops.enable() so that the scheduler + * doesn't see a stale value if they inspect the task struct. + */ + if (task_has_idle_policy(p)) + weight = WEIGHT_IDLEPRIO; + else + weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; + + p->scx.weight = sched_weight_to_cgroup(weight); + + if (SCX_HAS_OP(enable)) + SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); + scx_set_task_state(p, SCX_TASK_ENABLED); + + if (SCX_HAS_OP(set_weight)) + SCX_CALL_OP(SCX_KF_REST, set_weight, p, p->scx.weight); +} + +static void scx_ops_disable_task(struct task_struct *p) +{ + lockdep_assert_rq_held(task_rq(p)); + WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); + + if (SCX_HAS_OP(disable)) + SCX_CALL_OP(SCX_KF_REST, disable, p); + scx_set_task_state(p, SCX_TASK_READY); +} + +static void scx_ops_exit_task(struct task_struct *p) +{ + struct scx_exit_task_args args = { + .cancelled = false, + }; + + lockdep_assert_rq_held(task_rq(p)); + + switch (scx_get_task_state(p)) { + case SCX_TASK_NONE: + return; + case SCX_TASK_INIT: + args.cancelled = true; + break; + case SCX_TASK_READY: + break; + case SCX_TASK_ENABLED: + scx_ops_disable_task(p); + break; + default: + WARN_ON_ONCE(true); + return; + } + + if (SCX_HAS_OP(exit_task)) + SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); + scx_set_task_state(p, SCX_TASK_NONE); +} + +void init_scx_entity(struct sched_ext_entity *scx) +{ + /* + * init_idle() calls this function again after fork sequence is + * complete. Don't touch ->tasks_node as it's already linked. + */ + memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node)); + + INIT_LIST_HEAD(&scx->dsq_list.node); + RB_CLEAR_NODE(&scx->dsq_priq); + scx->sticky_cpu = -1; + scx->holding_cpu = -1; + INIT_LIST_HEAD(&scx->runnable_node); + scx->runnable_at = jiffies; + scx->ddsp_dsq_id = SCX_DSQ_INVALID; + scx->slice = SCX_SLICE_DFL; +} + +void scx_pre_fork(struct task_struct *p) +{ + /* + * BPF scheduler enable/disable paths want to be able to iterate and + * update all tasks which can become complex when racing forks. As + * enable/disable are very cold paths, let's use a percpu_rwsem to + * exclude forks. + */ + percpu_down_read(&scx_fork_rwsem); +} + +int scx_fork(struct task_struct *p) +{ + percpu_rwsem_assert_held(&scx_fork_rwsem); + + if (scx_enabled()) + return scx_ops_init_task(p, task_group(p), true); + else + return 0; +} + +void scx_post_fork(struct task_struct *p) +{ + if (scx_enabled()) { + scx_set_task_state(p, SCX_TASK_READY); + + /* + * Enable the task immediately if it's running on sched_ext. + * Otherwise, it'll be enabled in switching_to_scx() if and + * when it's ever configured to run with a SCHED_EXT policy. + */ + if (p->sched_class == &ext_sched_class) { + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + scx_ops_enable_task(p); + task_rq_unlock(rq, p, &rf); + } + } + + spin_lock_irq(&scx_tasks_lock); + list_add_tail(&p->scx.tasks_node, &scx_tasks); + spin_unlock_irq(&scx_tasks_lock); + + percpu_up_read(&scx_fork_rwsem); +} + +void scx_cancel_fork(struct task_struct *p) +{ + if (scx_enabled()) { + struct rq *rq; + struct rq_flags rf; + + rq = task_rq_lock(p, &rf); + WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); + scx_ops_exit_task(p); + task_rq_unlock(rq, p, &rf); + } + + percpu_up_read(&scx_fork_rwsem); +} + +void sched_ext_free(struct task_struct *p) +{ + unsigned long flags; + + spin_lock_irqsave(&scx_tasks_lock, flags); + list_del_init(&p->scx.tasks_node); + spin_unlock_irqrestore(&scx_tasks_lock, flags); + + /* + * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> + * ENABLED transitions can't race us. Disable ops for @p. + */ + if (scx_get_task_state(p) != SCX_TASK_NONE) { + struct rq_flags rf; + struct rq *rq; + + rq = task_rq_lock(p, &rf); + scx_ops_exit_task(p); + task_rq_unlock(rq, p, &rf); + } +} + +static void reweight_task_scx(struct rq *rq, struct task_struct *p, + const struct load_weight *lw) +{ + lockdep_assert_rq_held(task_rq(p)); + + p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); + if (SCX_HAS_OP(set_weight)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); +} + +static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) +{ +} + +static void switching_to_scx(struct rq *rq, struct task_struct *p) +{ + scx_ops_enable_task(p); + + /* + * set_cpus_allowed_scx() is not called while @p is associated with a + * different scheduler class. Keep the BPF scheduler up-to-date. + */ + if (SCX_HAS_OP(set_cpumask)) + SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, + (struct cpumask *)p->cpus_ptr); +} + +static void switched_from_scx(struct rq *rq, struct task_struct *p) +{ + scx_ops_disable_task(p); +} + +static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} +static void switched_to_scx(struct rq *rq, struct task_struct *p) {} + +int scx_check_setscheduler(struct task_struct *p, int policy) +{ + lockdep_assert_rq_held(task_rq(p)); + + /* if disallow, reject transitioning into SCX */ + if (scx_enabled() && READ_ONCE(p->scx.disallow) && + p->policy != policy && policy == SCHED_EXT) + return -EACCES; + + return 0; +} + +#ifdef CONFIG_NO_HZ_FULL +bool scx_can_stop_tick(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + if (scx_ops_bypassing()) + return false; + + if (p->sched_class != &ext_sched_class) + return true; + + /* + * @rq can dispatch from different DSQs, so we can't tell whether it + * needs the tick or not by looking at nr_running. Allow stopping ticks + * iff the BPF scheduler indicated so. See set_next_task_scx(). + */ + return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; +} +#endif + +/* + * Omitted operations: + * + * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task + * isn't tied to the CPU at that point. Preemption is implemented by resetting + * the victim task's slice to 0 and triggering reschedule on the target CPU. + * + * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. + * + * - task_fork/dead: We need fork/dead notifications for all tasks regardless of + * their current sched_class. Call them directly from sched core instead. + */ +DEFINE_SCHED_CLASS(ext) = { + .enqueue_task = enqueue_task_scx, + .dequeue_task = dequeue_task_scx, + .yield_task = yield_task_scx, + .yield_to_task = yield_to_task_scx, + + .wakeup_preempt = wakeup_preempt_scx, + + .pick_next_task = pick_next_task_scx, + + .put_prev_task = put_prev_task_scx, + .set_next_task = set_next_task_scx, + + .switch_class = switch_class_scx, + +#ifdef CONFIG_SMP + .balance = balance_scx, + .select_task_rq = select_task_rq_scx, + .task_woken = task_woken_scx, + .set_cpus_allowed = set_cpus_allowed_scx, + + .rq_online = rq_online_scx, + .rq_offline = rq_offline_scx, +#endif + +#ifdef CONFIG_SCHED_CORE + .pick_task = pick_task_scx, +#endif + + .task_tick = task_tick_scx, + + .switching_to = switching_to_scx, + .switched_from = switched_from_scx, + .switched_to = switched_to_scx, + .reweight_task = reweight_task_scx, + .prio_changed = prio_changed_scx, + + .update_curr = update_curr_scx, + +#ifdef CONFIG_UCLAMP_TASK + .uclamp_enabled = 1, +#endif +}; + +static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) +{ + memset(dsq, 0, sizeof(*dsq)); + + raw_spin_lock_init(&dsq->lock); + INIT_LIST_HEAD(&dsq->list); + dsq->id = dsq_id; +} + +static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) +{ + struct scx_dispatch_q *dsq; + int ret; + + if (dsq_id & SCX_DSQ_FLAG_BUILTIN) + return ERR_PTR(-EINVAL); + + dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); + if (!dsq) + return ERR_PTR(-ENOMEM); + + init_dsq(dsq, dsq_id); + + ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, + dsq_hash_params); + if (ret) { + kfree(dsq); + return ERR_PTR(ret); + } + return dsq; +} + +static void free_dsq_irq_workfn(struct irq_work *irq_work) +{ + struct llist_node *to_free = llist_del_all(&dsqs_to_free); + struct scx_dispatch_q *dsq, *tmp_dsq; + + llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) + kfree_rcu(dsq, rcu); +} + +static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); + +static void destroy_dsq(u64 dsq_id) +{ + struct scx_dispatch_q *dsq; + unsigned long flags; + + rcu_read_lock(); + + dsq = find_user_dsq(dsq_id); + if (!dsq) + goto out_unlock_rcu; + + raw_spin_lock_irqsave(&dsq->lock, flags); + + if (dsq->nr) { + scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", + dsq->id, dsq->nr); + goto out_unlock_dsq; + } + + if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) + goto out_unlock_dsq; + + /* + * Mark dead by invalidating ->id to prevent dispatch_enqueue() from + * queueing more tasks. As this function can be called from anywhere, + * freeing is bounced through an irq work to avoid nesting RCU + * operations inside scheduler locks. + */ + dsq->id = SCX_DSQ_INVALID; + llist_add(&dsq->free_node, &dsqs_to_free); + irq_work_queue(&free_dsq_irq_work); + +out_unlock_dsq: + raw_spin_unlock_irqrestore(&dsq->lock, flags); +out_unlock_rcu: + rcu_read_unlock(); +} + + +/******************************************************************************** + * Sysfs interface and ops enable/disable. + */ + +#define SCX_ATTR(_name) \ + static struct kobj_attribute scx_attr_##_name = { \ + .attr = { .name = __stringify(_name), .mode = 0444 }, \ + .show = scx_attr_##_name##_show, \ + } + +static ssize_t scx_attr_state_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%s\n", + scx_ops_enable_state_str[scx_ops_enable_state()]); +} +SCX_ATTR(state); + +static ssize_t scx_attr_switch_all_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); +} +SCX_ATTR(switch_all); + +static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); +} +SCX_ATTR(nr_rejected); + +static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); +} +SCX_ATTR(hotplug_seq); + +static struct attribute *scx_global_attrs[] = { + &scx_attr_state.attr, + &scx_attr_switch_all.attr, + &scx_attr_nr_rejected.attr, + &scx_attr_hotplug_seq.attr, + NULL, +}; + +static const struct attribute_group scx_global_attr_group = { + .attrs = scx_global_attrs, +}; + +static void scx_kobj_release(struct kobject *kobj) +{ + kfree(kobj); +} + +static ssize_t scx_attr_ops_show(struct kobject *kobj, + struct kobj_attribute *ka, char *buf) +{ + return sysfs_emit(buf, "%s\n", scx_ops.name); +} +SCX_ATTR(ops); + +static struct attribute *scx_sched_attrs[] = { + &scx_attr_ops.attr, + NULL, +}; +ATTRIBUTE_GROUPS(scx_sched); + +static const struct kobj_type scx_ktype = { + .release = scx_kobj_release, + .sysfs_ops = &kobj_sysfs_ops, + .default_groups = scx_sched_groups, +}; + +static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) +{ + return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); +} + +static const struct kset_uevent_ops scx_uevent_ops = { + .uevent = scx_uevent, +}; + +/* + * Used by sched_fork() and __setscheduler_prio() to pick the matching + * sched_class. dl/rt are already handled. + */ +bool task_should_scx(struct task_struct *p) +{ + if (!scx_enabled() || + unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) + return false; + if (READ_ONCE(scx_switching_all)) + return true; + return p->policy == SCHED_EXT; +} + +/** + * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress + * + * Bypassing guarantees that all runnable tasks make forward progress without + * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might + * be held by tasks that the BPF scheduler is forgetting to run, which + * unfortunately also excludes toggling the static branches. + * + * Let's work around by overriding a couple ops and modifying behaviors based on + * the DISABLING state and then cycling the queued tasks through dequeue/enqueue + * to force global FIFO scheduling. + * + * a. ops.enqueue() is ignored and tasks are queued in simple global FIFO order. + * + * b. ops.dispatch() is ignored. + * + * c. balance_scx() never sets %SCX_TASK_BAL_KEEP as the slice value can't be + * trusted. Whenever a tick triggers, the running task is rotated to the tail + * of the queue with core_sched_at touched. + * + * d. pick_next_task() suppresses zero slice warning. + * + * e. scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM + * operations. + * + * f. scx_prio_less() reverts to the default core_sched_at order. + */ +static void scx_ops_bypass(bool bypass) +{ + int depth, cpu; + + if (bypass) { + depth = atomic_inc_return(&scx_ops_bypass_depth); + WARN_ON_ONCE(depth <= 0); + if (depth != 1) + return; + } else { + depth = atomic_dec_return(&scx_ops_bypass_depth); + WARN_ON_ONCE(depth < 0); + if (depth != 0) + return; + } + + /* + * We need to guarantee that no tasks are on the BPF scheduler while + * bypassing. Either we see enabled or the enable path sees the + * increased bypass_depth before moving tasks to SCX. + */ + if (!scx_enabled()) + return; + + /* + * No task property is changing. We just need to make sure all currently + * queued tasks are re-queued according to the new scx_ops_bypassing() + * state. As an optimization, walk each rq's runnable_list instead of + * the scx_tasks list. + * + * This function can't trust the scheduler and thus can't use + * cpus_read_lock(). Walk all possible CPUs instead of online. + */ + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + struct task_struct *p, *n; + + rq_lock_irqsave(rq, &rf); + + /* + * The use of list_for_each_entry_safe_reverse() is required + * because each task is going to be removed from and added back + * to the runnable_list during iteration. Because they're added + * to the tail of the list, safe reverse iteration can still + * visit all nodes. + */ + list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, + scx.runnable_node) { + struct sched_enq_and_set_ctx ctx; + + /* cycling deq/enq is enough, see the function comment */ + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); + sched_enq_and_set_task(&ctx); + } + + rq_unlock_irqrestore(rq, &rf); + + /* kick to restore ticks */ + resched_cpu(cpu); + } +} + +static void free_exit_info(struct scx_exit_info *ei) +{ + kfree(ei->dump); + kfree(ei->msg); + kfree(ei->bt); + kfree(ei); +} + +static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) +{ + struct scx_exit_info *ei; + + ei = kzalloc(sizeof(*ei), GFP_KERNEL); + if (!ei) + return NULL; + + ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); + ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); + ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); + + if (!ei->bt || !ei->msg || !ei->dump) { + free_exit_info(ei); + return NULL; + } + + return ei; +} + +static const char *scx_exit_reason(enum scx_exit_kind kind) +{ + switch (kind) { + case SCX_EXIT_UNREG: + return "Scheduler unregistered from user space"; + case SCX_EXIT_UNREG_BPF: + return "Scheduler unregistered from BPF"; + case SCX_EXIT_UNREG_KERN: + return "Scheduler unregistered from the main kernel"; + case SCX_EXIT_SYSRQ: + return "disabled by sysrq-S"; + case SCX_EXIT_ERROR: + return "runtime error"; + case SCX_EXIT_ERROR_BPF: + return "scx_bpf_error"; + case SCX_EXIT_ERROR_STALL: + return "runnable task stall"; + default: + return ""; + } +} + +static void scx_ops_disable_workfn(struct kthread_work *work) +{ + struct scx_exit_info *ei = scx_exit_info; + struct scx_task_iter sti; + struct task_struct *p; + struct rhashtable_iter rht_iter; + struct scx_dispatch_q *dsq; + int i, kind; + + kind = atomic_read(&scx_exit_kind); + while (true) { + /* + * NONE indicates that a new scx_ops has been registered since + * disable was scheduled - don't kill the new ops. DONE + * indicates that the ops has already been disabled. + */ + if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) + return; + if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) + break; + } + ei->kind = kind; + ei->reason = scx_exit_reason(ei->kind); + + /* guarantee forward progress by bypassing scx_ops */ + scx_ops_bypass(true); + + switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { + case SCX_OPS_DISABLING: + WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); + break; + case SCX_OPS_DISABLED: + pr_warn("sched_ext: ops error detected without ops (%s)\n", + scx_exit_info->msg); + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != + SCX_OPS_DISABLING); + goto done; + default: + break; + } + + /* + * Here, every runnable task is guaranteed to make forward progress and + * we can safely use blocking synchronization constructs. Actually + * disable ops. + */ + mutex_lock(&scx_ops_enable_mutex); + + static_branch_disable(&__scx_switched_all); + WRITE_ONCE(scx_switching_all, false); + + /* + * Avoid racing against fork. See scx_ops_enable() for explanation on + * the locking order. + */ + percpu_down_write(&scx_fork_rwsem); + cpus_read_lock(); + + spin_lock_irq(&scx_tasks_lock); + scx_task_iter_init(&sti); + /* + * Invoke scx_ops_exit_task() on all non-idle tasks, including + * TASK_DEAD tasks. Because dead tasks may have a nonzero refcount, + * we may not have invoked sched_ext_free() on them by the time a + * scheduler is disabled. We must therefore exit the task here, or we'd + * fail to invoke ops.exit_task(), as the scheduler will have been + * unloaded by the time the task is subsequently exited on the + * sched_ext_free() path. + */ + while ((p = scx_task_iter_next_locked(&sti, true))) { + const struct sched_class *old_class = p->sched_class; + struct sched_enq_and_set_ctx ctx; + + if (READ_ONCE(p->__state) != TASK_DEAD) { + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, + &ctx); + + p->scx.slice = min_t(u64, p->scx.slice, SCX_SLICE_DFL); + __setscheduler_prio(p, p->prio); + check_class_changing(task_rq(p), p, old_class); + + sched_enq_and_set_task(&ctx); + + check_class_changed(task_rq(p), p, old_class, p->prio); + } + scx_ops_exit_task(p); + } + scx_task_iter_exit(&sti); + spin_unlock_irq(&scx_tasks_lock); + + /* no task is on scx, turn off all the switches and flush in-progress calls */ + static_branch_disable_cpuslocked(&__scx_ops_enabled); + for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) + static_branch_disable_cpuslocked(&scx_has_op[i]); + static_branch_disable_cpuslocked(&scx_ops_enq_last); + static_branch_disable_cpuslocked(&scx_ops_enq_exiting); + static_branch_disable_cpuslocked(&scx_ops_cpu_preempt); + static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); + synchronize_rcu(); + + cpus_read_unlock(); + percpu_up_write(&scx_fork_rwsem); + + if (ei->kind >= SCX_EXIT_ERROR) { + printk(KERN_ERR "sched_ext: BPF scheduler \"%s\" errored, disabling\n", scx_ops.name); + + if (ei->msg[0] == '\0') + printk(KERN_ERR "sched_ext: %s\n", ei->reason); + else + printk(KERN_ERR "sched_ext: %s (%s)\n", ei->reason, ei->msg); + + stack_trace_print(ei->bt, ei->bt_len, 2); + } + + if (scx_ops.exit) + SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); + + cancel_delayed_work_sync(&scx_watchdog_work); + + /* + * Delete the kobject from the hierarchy eagerly in addition to just + * dropping a reference. Otherwise, if the object is deleted + * asynchronously, sysfs could observe an object of the same name still + * in the hierarchy when another scheduler is loaded. + */ + kobject_del(scx_root_kobj); + kobject_put(scx_root_kobj); + scx_root_kobj = NULL; + + memset(&scx_ops, 0, sizeof(scx_ops)); + + rhashtable_walk_enter(&dsq_hash, &rht_iter); + do { + rhashtable_walk_start(&rht_iter); + + while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) + destroy_dsq(dsq->id); + + rhashtable_walk_stop(&rht_iter); + } while (dsq == ERR_PTR(-EAGAIN)); + rhashtable_walk_exit(&rht_iter); + + free_percpu(scx_dsp_ctx); + scx_dsp_ctx = NULL; + scx_dsp_max_batch = 0; + + free_exit_info(scx_exit_info); + scx_exit_info = NULL; + + mutex_unlock(&scx_ops_enable_mutex); + + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != + SCX_OPS_DISABLING); +done: + scx_ops_bypass(false); +} + +static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); + +static void schedule_scx_ops_disable_work(void) +{ + struct kthread_worker *helper = READ_ONCE(scx_ops_helper); + + /* + * We may be called spuriously before the first bpf_sched_ext_reg(). If + * scx_ops_helper isn't set up yet, there's nothing to do. + */ + if (helper) + kthread_queue_work(helper, &scx_ops_disable_work); +} + +static void scx_ops_disable(enum scx_exit_kind kind) +{ + int none = SCX_EXIT_NONE; + + if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) + kind = SCX_EXIT_ERROR; + + atomic_try_cmpxchg(&scx_exit_kind, &none, kind); + + schedule_scx_ops_disable_work(); +} + +static void dump_newline(struct seq_buf *s) +{ + trace_sched_ext_dump(""); + + /* @s may be zero sized and seq_buf triggers WARN if so */ + if (s->size) + seq_buf_putc(s, '\n'); +} + +static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) +{ + va_list args; + +#ifdef CONFIG_TRACEPOINTS + if (trace_sched_ext_dump_enabled()) { + /* protected by scx_dump_state()::dump_lock */ + static char line_buf[SCX_EXIT_MSG_LEN]; + + va_start(args, fmt); + vscnprintf(line_buf, sizeof(line_buf), fmt, args); + va_end(args); + + trace_sched_ext_dump(line_buf); + } +#endif + /* @s may be zero sized and seq_buf triggers WARN if so */ + if (s->size) { + va_start(args, fmt); + seq_buf_vprintf(s, fmt, args); + va_end(args); + + seq_buf_putc(s, '\n'); + } +} + +static void dump_stack_trace(struct seq_buf *s, const char *prefix, + const unsigned long *bt, unsigned int len) +{ + unsigned int i; + + for (i = 0; i < len; i++) + dump_line(s, "%s%pS", prefix, (void *)bt[i]); +} + +static void ops_dump_init(struct seq_buf *s, const char *prefix) +{ + struct scx_dump_data *dd = &scx_dump_data; + + lockdep_assert_irqs_disabled(); + + dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ + dd->first = true; + dd->cursor = 0; + dd->s = s; + dd->prefix = prefix; +} + +static void ops_dump_flush(void) +{ + struct scx_dump_data *dd = &scx_dump_data; + char *line = dd->buf.line; + + if (!dd->cursor) + return; + + /* + * There's something to flush and this is the first line. Insert a blank + * line to distinguish ops dump. + */ + if (dd->first) { + dump_newline(dd->s); + dd->first = false; + } + + /* + * There may be multiple lines in $line. Scan and emit each line + * separately. + */ + while (true) { + char *end = line; + char c; + + while (*end != '\n' && *end != '\0') + end++; + + /* + * If $line overflowed, it may not have newline at the end. + * Always emit with a newline. + */ + c = *end; + *end = '\0'; + dump_line(dd->s, "%s%s", dd->prefix, line); + if (c == '\0') + break; + + /* move to the next line */ + end++; + if (*end == '\0') + break; + line = end; + } + + dd->cursor = 0; +} + +static void ops_dump_exit(void) +{ + ops_dump_flush(); + scx_dump_data.cpu = -1; +} + +static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, + struct task_struct *p, char marker) +{ + static unsigned long bt[SCX_EXIT_BT_LEN]; + char dsq_id_buf[19] = "(n/a)"; + unsigned long ops_state = atomic_long_read(&p->scx.ops_state); + unsigned int bt_len; + + if (p->scx.dsq) + scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", + (unsigned long long)p->scx.dsq->id); + + dump_newline(s); + dump_line(s, " %c%c %s[%d] %+ldms", + marker, task_state_to_char(p), p->comm, p->pid, + jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); + dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", + scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, + p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, + ops_state >> SCX_OPSS_QSEQ_SHIFT); + dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s dsq_vtime=%llu", + p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf, + p->scx.dsq_vtime); + dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); + + if (SCX_HAS_OP(dump_task)) { + ops_dump_init(s, " "); + SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); + ops_dump_exit(); + } + + bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); + if (bt_len) { + dump_newline(s); + dump_stack_trace(s, " ", bt, bt_len); + } +} + +static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) +{ + static DEFINE_SPINLOCK(dump_lock); + static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; + struct scx_dump_ctx dctx = { + .kind = ei->kind, + .exit_code = ei->exit_code, + .reason = ei->reason, + .at_ns = ktime_get_ns(), + .at_jiffies = jiffies, + }; + struct seq_buf s; + unsigned long flags; + char *buf; + int cpu; + + spin_lock_irqsave(&dump_lock, flags); + + seq_buf_init(&s, ei->dump, dump_len); + + if (ei->kind == SCX_EXIT_NONE) { + dump_line(&s, "Debug dump triggered by %s", ei->reason); + } else { + dump_line(&s, "%s[%d] triggered exit kind %d:", + current->comm, current->pid, ei->kind); + dump_line(&s, " %s (%s)", ei->reason, ei->msg); + dump_newline(&s); + dump_line(&s, "Backtrace:"); + dump_stack_trace(&s, " ", ei->bt, ei->bt_len); + } + + if (SCX_HAS_OP(dump)) { + ops_dump_init(&s, ""); + SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); + ops_dump_exit(); + } + + dump_newline(&s); + dump_line(&s, "CPU states"); + dump_line(&s, "----------"); + + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + struct rq_flags rf; + struct task_struct *p; + struct seq_buf ns; + size_t avail, used; + bool idle; + + rq_lock(rq, &rf); + + idle = list_empty(&rq->scx.runnable_list) && + rq->curr->sched_class == &idle_sched_class; + + if (idle && !SCX_HAS_OP(dump_cpu)) + goto next; + + /* + * We don't yet know whether ops.dump_cpu() will produce output + * and we may want to skip the default CPU dump if it doesn't. + * Use a nested seq_buf to generate the standard dump so that we + * can decide whether to commit later. + */ + avail = seq_buf_get_buf(&s, &buf); + seq_buf_init(&ns, buf, avail); + + dump_newline(&ns); + dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", + cpu, rq->scx.nr_running, rq->scx.flags, + rq->scx.cpu_released, rq->scx.ops_qseq, + rq->scx.pnt_seq); + dump_line(&ns, " curr=%s[%d] class=%ps", + rq->curr->comm, rq->curr->pid, + rq->curr->sched_class); + if (!cpumask_empty(rq->scx.cpus_to_kick)) + dump_line(&ns, " cpus_to_kick : %*pb", + cpumask_pr_args(rq->scx.cpus_to_kick)); + if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) + dump_line(&ns, " idle_to_kick : %*pb", + cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); + if (!cpumask_empty(rq->scx.cpus_to_preempt)) + dump_line(&ns, " cpus_to_preempt: %*pb", + cpumask_pr_args(rq->scx.cpus_to_preempt)); + if (!cpumask_empty(rq->scx.cpus_to_wait)) + dump_line(&ns, " cpus_to_wait : %*pb", + cpumask_pr_args(rq->scx.cpus_to_wait)); + + used = seq_buf_used(&ns); + if (SCX_HAS_OP(dump_cpu)) { + ops_dump_init(&ns, " "); + SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); + ops_dump_exit(); + } + + /* + * If idle && nothing generated by ops.dump_cpu(), there's + * nothing interesting. Skip. + */ + if (idle && used == seq_buf_used(&ns)) + goto next; + + /* + * $s may already have overflowed when $ns was created. If so, + * calling commit on it will trigger BUG. + */ + if (avail) { + seq_buf_commit(&s, seq_buf_used(&ns)); + if (seq_buf_has_overflowed(&ns)) + seq_buf_set_overflow(&s); + } + + if (rq->curr->sched_class == &ext_sched_class) + scx_dump_task(&s, &dctx, rq->curr, '*'); + + list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) + scx_dump_task(&s, &dctx, p, ' '); + next: + rq_unlock(rq, &rf); + } + + if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) + memcpy(ei->dump + dump_len - sizeof(trunc_marker), + trunc_marker, sizeof(trunc_marker)); + + spin_unlock_irqrestore(&dump_lock, flags); +} + +static void scx_ops_error_irq_workfn(struct irq_work *irq_work) +{ + struct scx_exit_info *ei = scx_exit_info; + + if (ei->kind >= SCX_EXIT_ERROR) + scx_dump_state(ei, scx_ops.exit_dump_len); + + schedule_scx_ops_disable_work(); +} + +static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); + +static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, + s64 exit_code, + const char *fmt, ...) +{ + struct scx_exit_info *ei = scx_exit_info; + int none = SCX_EXIT_NONE; + va_list args; + + if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) + return; + + ei->exit_code = exit_code; + + if (kind >= SCX_EXIT_ERROR) + ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); + + va_start(args, fmt); + vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); + va_end(args); + + /* + * Set ei->kind and ->reason for scx_dump_state(). They'll be set again + * in scx_ops_disable_workfn(). + */ + ei->kind = kind; + ei->reason = scx_exit_reason(ei->kind); + + irq_work_queue(&scx_ops_error_irq_work); +} + +static struct kthread_worker *scx_create_rt_helper(const char *name) +{ + struct kthread_worker *helper; + + helper = kthread_create_worker(0, name); + if (helper) + sched_set_fifo(helper->task); + return helper; +} + +static void check_hotplug_seq(const struct sched_ext_ops *ops) +{ + unsigned long long global_hotplug_seq; + + /* + * If a hotplug event has occurred between when a scheduler was + * initialized, and when we were able to attach, exit and notify user + * space about it. + */ + if (ops->hotplug_seq) { + global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); + if (ops->hotplug_seq != global_hotplug_seq) { + scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, + "expected hotplug seq %llu did not match actual %llu", + ops->hotplug_seq, global_hotplug_seq); + } + } +} + +static int validate_ops(const struct sched_ext_ops *ops) +{ + /* + * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the + * ops.enqueue() callback isn't implemented. + */ + if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { + scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); + return -EINVAL; + } + + return 0; +} + +static int scx_ops_enable(struct sched_ext_ops *ops) +{ + struct scx_task_iter sti; + struct task_struct *p; + unsigned long timeout; + int i, cpu, ret; + + if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), + cpu_possible_mask)) { + pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation"); + return -EINVAL; + } + + mutex_lock(&scx_ops_enable_mutex); + + if (!scx_ops_helper) { + WRITE_ONCE(scx_ops_helper, + scx_create_rt_helper("sched_ext_ops_helper")); + if (!scx_ops_helper) { + ret = -ENOMEM; + goto err_unlock; + } + } + + if (scx_ops_enable_state() != SCX_OPS_DISABLED) { + ret = -EBUSY; + goto err_unlock; + } + + scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); + if (!scx_root_kobj) { + ret = -ENOMEM; + goto err_unlock; + } + + scx_root_kobj->kset = scx_kset; + ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); + if (ret < 0) + goto err; + + scx_exit_info = alloc_exit_info(ops->exit_dump_len); + if (!scx_exit_info) { + ret = -ENOMEM; + goto err_del; + } + + /* + * Set scx_ops, transition to PREPPING and clear exit info to arm the + * disable path. Failure triggers full disabling from here on. + */ + scx_ops = *ops; + + WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_PREPPING) != + SCX_OPS_DISABLED); + + atomic_set(&scx_exit_kind, SCX_EXIT_NONE); + scx_warned_zero_slice = false; + + atomic_long_set(&scx_nr_rejected, 0); + + for_each_possible_cpu(cpu) + cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; + + /* + * Keep CPUs stable during enable so that the BPF scheduler can track + * online CPUs by watching ->on/offline_cpu() after ->init(). + */ + cpus_read_lock(); + + if (scx_ops.init) { + ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); + if (ret) { + ret = ops_sanitize_err("init", ret); + goto err_disable_unlock_cpus; + } + } + + for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) + if (((void (**)(void))ops)[i]) + static_branch_enable_cpuslocked(&scx_has_op[i]); + + cpus_read_unlock(); + + ret = validate_ops(ops); + if (ret) + goto err_disable; + + WARN_ON_ONCE(scx_dsp_ctx); + scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; + scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, + scx_dsp_max_batch), + __alignof__(struct scx_dsp_ctx)); + if (!scx_dsp_ctx) { + ret = -ENOMEM; + goto err_disable; + } + + if (ops->timeout_ms) + timeout = msecs_to_jiffies(ops->timeout_ms); + else + timeout = SCX_WATCHDOG_MAX_TIMEOUT; + + WRITE_ONCE(scx_watchdog_timeout, timeout); + WRITE_ONCE(scx_watchdog_timestamp, jiffies); + queue_delayed_work(system_unbound_wq, &scx_watchdog_work, + scx_watchdog_timeout / 2); + + /* + * Lock out forks before opening the floodgate so that they don't wander + * into the operations prematurely. + * + * We don't need to keep the CPUs stable but grab cpus_read_lock() to + * ease future locking changes for cgroup suport. + * + * Note that cpu_hotplug_lock must nest inside scx_fork_rwsem due to the + * following dependency chain: + * + * scx_fork_rwsem --> pernet_ops_rwsem --> cpu_hotplug_lock + */ + percpu_down_write(&scx_fork_rwsem); + cpus_read_lock(); + + check_hotplug_seq(ops); + + for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) + if (((void (**)(void))ops)[i]) + static_branch_enable_cpuslocked(&scx_has_op[i]); + + if (ops->flags & SCX_OPS_ENQ_LAST) + static_branch_enable_cpuslocked(&scx_ops_enq_last); + + if (ops->flags & SCX_OPS_ENQ_EXITING) + static_branch_enable_cpuslocked(&scx_ops_enq_exiting); + if (scx_ops.cpu_acquire || scx_ops.cpu_release) + static_branch_enable_cpuslocked(&scx_ops_cpu_preempt); + + if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { + reset_idle_masks(); + static_branch_enable_cpuslocked(&scx_builtin_idle_enabled); + } else { + static_branch_disable_cpuslocked(&scx_builtin_idle_enabled); + } + + static_branch_enable_cpuslocked(&__scx_ops_enabled); + + /* + * Enable ops for every task. Fork is excluded by scx_fork_rwsem + * preventing new tasks from being added. No need to exclude tasks + * leaving as sched_ext_free() can handle both prepped and enabled + * tasks. Prep all tasks first and then enable them with preemption + * disabled. + */ + spin_lock_irq(&scx_tasks_lock); + + scx_task_iter_init(&sti); + while ((p = scx_task_iter_next_locked(&sti, false))) { + get_task_struct(p); + scx_task_iter_rq_unlock(&sti); + spin_unlock_irq(&scx_tasks_lock); + + ret = scx_ops_init_task(p, task_group(p), false); + if (ret) { + put_task_struct(p); + spin_lock_irq(&scx_tasks_lock); + scx_task_iter_exit(&sti); + spin_unlock_irq(&scx_tasks_lock); + pr_err("sched_ext: ops.init_task() failed (%d) for %s[%d] while loading\n", + ret, p->comm, p->pid); + goto err_disable_unlock_all; + } + + put_task_struct(p); + spin_lock_irq(&scx_tasks_lock); + } + scx_task_iter_exit(&sti); + + /* + * All tasks are prepped but are still ops-disabled. Ensure that + * %current can't be scheduled out and switch everyone. + * preempt_disable() is necessary because we can't guarantee that + * %current won't be starved if scheduled out while switching. + */ + preempt_disable(); + + /* + * From here on, the disable path must assume that tasks have ops + * enabled and need to be recovered. + * + * Transition to ENABLING fails iff the BPF scheduler has already + * triggered scx_bpf_error(). Returning an error code here would lose + * the recorded error information. Exit indicating success so that the + * error is notified through ops.exit() with all the details. + */ + if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLING, SCX_OPS_PREPPING)) { + preempt_enable(); + spin_unlock_irq(&scx_tasks_lock); + WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); + ret = 0; + goto err_disable_unlock_all; + } + + /* + * We're fully committed and can't fail. The PREPPED -> ENABLED + * transitions here are synchronized against sched_ext_free() through + * scx_tasks_lock. + */ + WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); + + scx_task_iter_init(&sti); + while ((p = scx_task_iter_next_locked(&sti, false))) { + const struct sched_class *old_class = p->sched_class; + struct sched_enq_and_set_ctx ctx; + + sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); + + scx_set_task_state(p, SCX_TASK_READY); + __setscheduler_prio(p, p->prio); + check_class_changing(task_rq(p), p, old_class); + + sched_enq_and_set_task(&ctx); + + check_class_changed(task_rq(p), p, old_class, p->prio); + } + scx_task_iter_exit(&sti); + + spin_unlock_irq(&scx_tasks_lock); + preempt_enable(); + cpus_read_unlock(); + percpu_up_write(&scx_fork_rwsem); + + /* see above ENABLING transition for the explanation on exiting with 0 */ + if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { + WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); + ret = 0; + goto err_disable; + } + + if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) + static_branch_enable(&__scx_switched_all); + + kobject_uevent(scx_root_kobj, KOBJ_ADD); + mutex_unlock(&scx_ops_enable_mutex); + + return 0; + +err_del: + kobject_del(scx_root_kobj); +err: + kobject_put(scx_root_kobj); + scx_root_kobj = NULL; + if (scx_exit_info) { + free_exit_info(scx_exit_info); + scx_exit_info = NULL; + } +err_unlock: + mutex_unlock(&scx_ops_enable_mutex); + return ret; + +err_disable_unlock_all: + percpu_up_write(&scx_fork_rwsem); +err_disable_unlock_cpus: + cpus_read_unlock(); +err_disable: + mutex_unlock(&scx_ops_enable_mutex); + /* must be fully disabled before returning */ + scx_ops_disable(SCX_EXIT_ERROR); + kthread_flush_work(&scx_ops_disable_work); + return ret; +} + + +/******************************************************************************** + * bpf_struct_ops plumbing. + */ +#include +#include +#include + +extern struct btf *btf_vmlinux; +static const struct btf_type *task_struct_type; +static u32 task_struct_type_id; + +static bool set_arg_maybe_null(const char *op, int arg_n, int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + struct btf *btf = bpf_get_btf_vmlinux(); + const struct bpf_struct_ops_desc *st_ops_desc; + const struct btf_member *member; + const struct btf_type *t; + u32 btf_id, member_idx; + const char *mname; + + /* struct_ops op args are all sequential, 64-bit numbers */ + if (off != arg_n * sizeof(__u64)) + return false; + + /* btf_id should be the type id of struct sched_ext_ops */ + btf_id = prog->aux->attach_btf_id; + st_ops_desc = bpf_struct_ops_find(btf, btf_id); + if (!st_ops_desc) + return false; + + /* BTF type of struct sched_ext_ops */ + t = st_ops_desc->type; + + member_idx = prog->expected_attach_type; + if (member_idx >= btf_type_vlen(t)) + return false; + + /* + * Get the member name of this struct_ops program, which corresponds to + * a field in struct sched_ext_ops. For example, the member name of the + * dispatch struct_ops program (callback) is "dispatch". + */ + member = &btf_type_member(t)[member_idx]; + mname = btf_name_by_offset(btf_vmlinux, member->name_off); + + if (!strcmp(mname, op)) { + /* + * The value is a pointer to a type (struct task_struct) given + * by a BTF ID (PTR_TO_BTF_ID). It is trusted (PTR_TRUSTED), + * however, can be a NULL (PTR_MAYBE_NULL). The BPF program + * should check the pointer to make sure it is not NULL before + * using it, or the verifier will reject the program. + * + * Longer term, this is something that should be addressed by + * BTF, and be fully contained within the verifier. + */ + info->reg_type = PTR_MAYBE_NULL | PTR_TO_BTF_ID | PTR_TRUSTED; + info->btf = btf_vmlinux; + info->btf_id = task_struct_type_id; + + return true; + } + + return false; +} + +static bool bpf_scx_is_valid_access(int off, int size, + enum bpf_access_type type, + const struct bpf_prog *prog, + struct bpf_insn_access_aux *info) +{ + if (type != BPF_READ) + return false; + if (set_arg_maybe_null("dispatch", 1, off, size, type, prog, info) || + set_arg_maybe_null("yield", 1, off, size, type, prog, info)) + return true; + if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) + return false; + if (off % size != 0) + return false; + + return btf_ctx_access(off, size, type, prog, info); +} + +static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, + const struct bpf_reg_state *reg, int off, + int size) +{ + const struct btf_type *t; + + t = btf_type_by_id(reg->btf, reg->btf_id); + if (t == task_struct_type) { + if (off >= offsetof(struct task_struct, scx.slice) && + off + size <= offsetofend(struct task_struct, scx.slice)) + return SCALAR_VALUE; + if (off >= offsetof(struct task_struct, scx.dsq_vtime) && + off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) + return SCALAR_VALUE; + if (off >= offsetof(struct task_struct, scx.disallow) && + off + size <= offsetofend(struct task_struct, scx.disallow)) + return SCALAR_VALUE; + } + + return -EACCES; +} + +static const struct bpf_func_proto * +bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) +{ + switch (func_id) { + case BPF_FUNC_task_storage_get: + return &bpf_task_storage_get_proto; + case BPF_FUNC_task_storage_delete: + return &bpf_task_storage_delete_proto; + default: + return bpf_base_func_proto(func_id, prog); + } +} + +static const struct bpf_verifier_ops bpf_scx_verifier_ops = { + .get_func_proto = bpf_scx_get_func_proto, + .is_valid_access = bpf_scx_is_valid_access, + .btf_struct_access = bpf_scx_btf_struct_access, +}; + +static int bpf_scx_init_member(const struct btf_type *t, + const struct btf_member *member, + void *kdata, const void *udata) +{ + const struct sched_ext_ops *uops = udata; + struct sched_ext_ops *ops = kdata; + u32 moff = __btf_member_bit_offset(t, member) / 8; + int ret; + + switch (moff) { + case offsetof(struct sched_ext_ops, dispatch_max_batch): + if (*(u32 *)(udata + moff) > INT_MAX) + return -E2BIG; + ops->dispatch_max_batch = *(u32 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, flags): + if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) + return -EINVAL; + ops->flags = *(u64 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, name): + ret = bpf_obj_name_cpy(ops->name, uops->name, + sizeof(ops->name)); + if (ret < 0) + return ret; + if (ret == 0) + return -EINVAL; + return 1; + case offsetof(struct sched_ext_ops, timeout_ms): + if (msecs_to_jiffies(*(u32 *)(udata + moff)) > + SCX_WATCHDOG_MAX_TIMEOUT) + return -E2BIG; + ops->timeout_ms = *(u32 *)(udata + moff); + return 1; + case offsetof(struct sched_ext_ops, exit_dump_len): + ops->exit_dump_len = + *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; + return 1; + case offsetof(struct sched_ext_ops, hotplug_seq): + ops->hotplug_seq = *(u64 *)(udata + moff); + return 1; + } + + return 0; +} + +static int bpf_scx_check_member(const struct btf_type *t, + const struct btf_member *member, + const struct bpf_prog *prog) +{ + u32 moff = __btf_member_bit_offset(t, member) / 8; + + switch (moff) { + case offsetof(struct sched_ext_ops, init_task): + case offsetof(struct sched_ext_ops, cpu_online): + case offsetof(struct sched_ext_ops, cpu_offline): + case offsetof(struct sched_ext_ops, init): + case offsetof(struct sched_ext_ops, exit): + break; + default: + if (prog->sleepable) + return -EINVAL; + } + + return 0; +} + +static int bpf_scx_reg(void *kdata) +{ + return scx_ops_enable(kdata); +} + +static void bpf_scx_unreg(void *kdata) +{ + scx_ops_disable(SCX_EXIT_UNREG); + kthread_flush_work(&scx_ops_disable_work); +} + +static int bpf_scx_init(struct btf *btf) +{ + s32 type_id; + + type_id = btf_find_by_name_kind(btf, "task_struct", BTF_KIND_STRUCT); + if (type_id < 0) + return -EINVAL; + task_struct_type = btf_type_by_id(btf, type_id); + task_struct_type_id = type_id; + + return 0; +} + +static int bpf_scx_update(void *kdata, void *old_kdata) +{ + /* + * sched_ext does not support updating the actively-loaded BPF + * scheduler, as registering a BPF scheduler can always fail if the + * scheduler returns an error code for e.g. ops.init(), ops.init_task(), + * etc. Similarly, we can always race with unregistration happening + * elsewhere, such as with sysrq. + */ + return -EOPNOTSUPP; +} + +static int bpf_scx_validate(void *kdata) +{ + return 0; +} + +static s32 select_cpu_stub(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } +static void enqueue_stub(struct task_struct *p, u64 enq_flags) {} +static void dequeue_stub(struct task_struct *p, u64 enq_flags) {} +static void dispatch_stub(s32 prev_cpu, struct task_struct *p) {} +static void runnable_stub(struct task_struct *p, u64 enq_flags) {} +static void running_stub(struct task_struct *p) {} +static void stopping_stub(struct task_struct *p, bool runnable) {} +static void quiescent_stub(struct task_struct *p, u64 deq_flags) {} +static bool yield_stub(struct task_struct *from, struct task_struct *to) { return false; } +static bool core_sched_before_stub(struct task_struct *a, struct task_struct *b) { return false; } +static void set_weight_stub(struct task_struct *p, u32 weight) {} +static void set_cpumask_stub(struct task_struct *p, const struct cpumask *mask) {} +static void update_idle_stub(s32 cpu, bool idle) {} +static void cpu_acquire_stub(s32 cpu, struct scx_cpu_acquire_args *args) {} +static void cpu_release_stub(s32 cpu, struct scx_cpu_release_args *args) {} +static s32 init_task_stub(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } +static void exit_task_stub(struct task_struct *p, struct scx_exit_task_args *args) {} +static void enable_stub(struct task_struct *p) {} +static void disable_stub(struct task_struct *p) {} +static void cpu_online_stub(s32 cpu) {} +static void cpu_offline_stub(s32 cpu) {} +static s32 init_stub(void) { return -EINVAL; } +static void exit_stub(struct scx_exit_info *info) {} + +static struct sched_ext_ops __bpf_ops_sched_ext_ops = { + .select_cpu = select_cpu_stub, + .enqueue = enqueue_stub, + .dequeue = dequeue_stub, + .dispatch = dispatch_stub, + .runnable = runnable_stub, + .running = running_stub, + .stopping = stopping_stub, + .quiescent = quiescent_stub, + .yield = yield_stub, + .core_sched_before = core_sched_before_stub, + .set_weight = set_weight_stub, + .set_cpumask = set_cpumask_stub, + .update_idle = update_idle_stub, + .cpu_acquire = cpu_acquire_stub, + .cpu_release = cpu_release_stub, + .init_task = init_task_stub, + .exit_task = exit_task_stub, + .enable = enable_stub, + .disable = disable_stub, + .cpu_online = cpu_online_stub, + .cpu_offline = cpu_offline_stub, + .init = init_stub, + .exit = exit_stub, +}; + +static struct bpf_struct_ops bpf_sched_ext_ops = { + .verifier_ops = &bpf_scx_verifier_ops, + .reg = bpf_scx_reg, + .unreg = bpf_scx_unreg, + .check_member = bpf_scx_check_member, + .init_member = bpf_scx_init_member, + .init = bpf_scx_init, + .update = bpf_scx_update, + .validate = bpf_scx_validate, + .name = "sched_ext_ops", + .owner = THIS_MODULE, + .cfi_stubs = &__bpf_ops_sched_ext_ops +}; + + +/******************************************************************************** + * System integration and init. + */ + +static void sysrq_handle_sched_ext_reset(u8 key) +{ + if (scx_ops_helper) + scx_ops_disable(SCX_EXIT_SYSRQ); + else + pr_info("sched_ext: BPF scheduler not yet used\n"); +} + +static const struct sysrq_key_op sysrq_sched_ext_reset_op = { + .handler = sysrq_handle_sched_ext_reset, + .help_msg = "reset-sched-ext(S)", + .action_msg = "Disable sched_ext and revert all tasks to CFS", + .enable_mask = SYSRQ_ENABLE_RTNICE, +}; + +static void sysrq_handle_sched_ext_dump(u8 key) +{ + struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; + + if (scx_enabled()) + scx_dump_state(&ei, 0); +} + +static const struct sysrq_key_op sysrq_sched_ext_dump_op = { + .handler = sysrq_handle_sched_ext_dump, + .help_msg = "dump-sched-ext(D)", + .action_msg = "Trigger sched_ext debug dump", + .enable_mask = SYSRQ_ENABLE_RTNICE, +}; + +static bool can_skip_idle_kick(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + + /* + * We can skip idle kicking if @rq is going to go through at least one + * full SCX scheduling cycle before going idle. Just checking whether + * curr is not idle is insufficient because we could be racing + * balance_one() trying to pull the next task from a remote rq, which + * may fail, and @rq may become idle afterwards. + * + * The race window is small and we don't and can't guarantee that @rq is + * only kicked while idle anyway. Skip only when sure. + */ + return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); +} + +static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) +{ + struct rq *rq = cpu_rq(cpu); + struct scx_rq *this_scx = &this_rq->scx; + bool should_wait = false; + unsigned long flags; + + raw_spin_rq_lock_irqsave(rq, flags); + + /* + * During CPU hotplug, a CPU may depend on kicking itself to make + * forward progress. Allow kicking self regardless of online state. + */ + if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { + if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { + if (rq->curr->sched_class == &ext_sched_class) + rq->curr->scx.slice = 0; + cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); + } + + if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { + pseqs[cpu] = rq->scx.pnt_seq; + should_wait = true; + } + + resched_curr(rq); + } else { + cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); + cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); + } + + raw_spin_rq_unlock_irqrestore(rq, flags); + + return should_wait; +} + +static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) +{ + struct rq *rq = cpu_rq(cpu); + unsigned long flags; + + raw_spin_rq_lock_irqsave(rq, flags); + + if (!can_skip_idle_kick(rq) && + (cpu_online(cpu) || cpu == cpu_of(this_rq))) + resched_curr(rq); + + raw_spin_rq_unlock_irqrestore(rq, flags); +} + +static void kick_cpus_irq_workfn(struct irq_work *irq_work) +{ + struct rq *this_rq = this_rq(); + struct scx_rq *this_scx = &this_rq->scx; + unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); + bool should_wait = false; + s32 cpu; + + for_each_cpu(cpu, this_scx->cpus_to_kick) { + should_wait |= kick_one_cpu(cpu, this_rq, pseqs); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); + } + + for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { + kick_one_cpu_if_idle(cpu, this_rq); + cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); + } + + if (!should_wait) + return; + + for_each_cpu(cpu, this_scx->cpus_to_wait) { + unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; + + if (cpu != cpu_of(this_rq)) { + /* + * Pairs with smp_store_release() issued by this CPU in + * scx_next_task_picked() on the resched path. + * + * We busy-wait here to guarantee that no other task can + * be scheduled on our core before the target CPU has + * entered the resched path. + */ + while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) + cpu_relax(); + } + + cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); + } +} + +/** + * print_scx_info - print out sched_ext scheduler state + * @log_lvl: the log level to use when printing + * @p: target task + * + * If a sched_ext scheduler is enabled, print the name and state of the + * scheduler. If @p is on sched_ext, print further information about the task. + * + * This function can be safely called on any task as long as the task_struct + * itself is accessible. While safe, this function isn't synchronized and may + * print out mixups or garbages of limited length. + */ +void print_scx_info(const char *log_lvl, struct task_struct *p) +{ + enum scx_ops_enable_state state = scx_ops_enable_state(); + const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; + char runnable_at_buf[22] = "?"; + struct sched_class *class; + unsigned long runnable_at; + + if (state == SCX_OPS_DISABLED) + return; + + /* + * Carefully check if the task was running on sched_ext, and then + * carefully copy the time it's been runnable, and its state. + */ + if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || + class != &ext_sched_class) { + printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, + scx_ops_enable_state_str[state], all); + return; + } + + if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, + sizeof(runnable_at))) + scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", + jiffies_delta_msecs(runnable_at, jiffies)); + + /* print everything onto one line to conserve console space */ + printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", + log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, + runnable_at_buf); +} + +static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) +{ + /* + * SCX schedulers often have userspace components which are sometimes + * involved in critial scheduling paths. PM operations involve freezing + * userspace which can lead to scheduling misbehaviors including stalls. + * Let's bypass while PM operations are in progress. + */ + switch (event) { + case PM_HIBERNATION_PREPARE: + case PM_SUSPEND_PREPARE: + case PM_RESTORE_PREPARE: + scx_ops_bypass(true); + break; + case PM_POST_HIBERNATION: + case PM_POST_SUSPEND: + case PM_POST_RESTORE: + scx_ops_bypass(false); + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block scx_pm_notifier = { + .notifier_call = scx_pm_handler, +}; + +void __init init_sched_ext_class(void) +{ + s32 cpu, v; + + /* + * The following is to prevent the compiler from optimizing out the enum + * definitions so that BPF scheduler implementations can use them + * through the generated vmlinux.h. + */ + WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT); + + BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); + init_dsq(&scx_dsq_global, SCX_DSQ_GLOBAL); +#ifdef CONFIG_SMP + BUG_ON(!alloc_cpumask_var(&idle_masks.cpu, GFP_KERNEL)); + BUG_ON(!alloc_cpumask_var(&idle_masks.smt, GFP_KERNEL)); +#endif + scx_kick_cpus_pnt_seqs = + __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, + __alignof__(scx_kick_cpus_pnt_seqs[0])); + BUG_ON(!scx_kick_cpus_pnt_seqs); + + for_each_possible_cpu(cpu) { + struct rq *rq = cpu_rq(cpu); + + init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); + INIT_LIST_HEAD(&rq->scx.runnable_list); + INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); + + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_preempt, GFP_KERNEL)); + BUG_ON(!zalloc_cpumask_var(&rq->scx.cpus_to_wait, GFP_KERNEL)); + init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); + init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); + + if (cpu_online(cpu)) + cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; + } + + register_sysrq_key('S', &sysrq_sched_ext_reset_op); + register_sysrq_key('D', &sysrq_sched_ext_dump_op); + INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); +} + + +/******************************************************************************** + * Helpers that can be called from the BPF scheduler. + */ +#include + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_create_dsq - Create a custom DSQ + * @dsq_id: DSQ to create + * @node: NUMA node to allocate from + * + * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable + * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. + */ +__bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) +{ + if (unlikely(node >= (int)nr_node_ids || + (node < 0 && node != NUMA_NO_NODE))) + return -EINVAL; + return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_sleepable) +BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) +BTF_KFUNCS_END(scx_kfunc_ids_sleepable) + +static const struct btf_kfunc_id_set scx_kfunc_set_sleepable = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_sleepable, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu() + * @p: task_struct to select a CPU for + * @prev_cpu: CPU @p was on previously + * @wake_flags: %SCX_WAKE_* flags + * @is_idle: out parameter indicating whether the returned CPU is idle + * + * Can only be called from ops.select_cpu() if the built-in CPU selection is + * enabled - ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE is set. + * @p, @prev_cpu and @wake_flags match ops.select_cpu(). + * + * Returns the picked CPU with *@is_idle indicating whether the picked CPU is + * currently idle and thus a good candidate for direct dispatching. + */ +__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, + u64 wake_flags, bool *is_idle) +{ + if (!scx_kf_allowed(SCX_KF_SELECT_CPU)) { + *is_idle = false; + return prev_cpu; + } +#ifdef CONFIG_SMP + return scx_select_cpu_dfl(p, prev_cpu, wake_flags, is_idle); +#else + *is_idle = false; + return prev_cpu; +#endif +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_select_cpu) +BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_select_cpu) + +static const struct btf_kfunc_id_set scx_kfunc_set_select_cpu = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_select_cpu, +}; + +static bool scx_dispatch_preamble(struct task_struct *p, u64 enq_flags) +{ + if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) + return false; + + lockdep_assert_irqs_disabled(); + + if (unlikely(!p)) { + scx_ops_error("called with NULL task"); + return false; + } + + if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { + scx_ops_error("invalid enq_flags 0x%llx", enq_flags); + return false; + } + + return true; +} + +static void scx_dispatch_commit(struct task_struct *p, u64 dsq_id, u64 enq_flags) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + struct task_struct *ddsp_task; + + ddsp_task = __this_cpu_read(direct_dispatch_task); + if (ddsp_task) { + mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); + return; + } + + if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { + scx_ops_error("dispatch buffer overflow"); + return; + } + + dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ + .task = p, + .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, + .dsq_id = dsq_id, + .enq_flags = enq_flags, + }; +} + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_dispatch - Dispatch a task into the FIFO queue of a DSQ + * @p: task_struct to dispatch + * @dsq_id: DSQ to dispatch to + * @slice: duration @p can run for in nsecs + * @enq_flags: SCX_ENQ_* + * + * Dispatch @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe + * to call this function spuriously. Can be called from ops.enqueue(), + * ops.select_cpu(), and ops.dispatch(). + * + * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch + * and @p must match the task being enqueued. Also, %SCX_DSQ_LOCAL_ON can't be + * used to target the local DSQ of a CPU other than the enqueueing one. Use + * ops.select_cpu() to be on the target CPU in the first place. + * + * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p + * will be directly dispatched to the corresponding dispatch queue after + * ops.select_cpu() returns. If @p is dispatched to SCX_DSQ_LOCAL, it will be + * dispatched to the local DSQ of the CPU returned by ops.select_cpu(). + * @enq_flags are OR'd with the enqueue flags on the enqueue path before the + * task is dispatched. + * + * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id + * and this function can be called upto ops.dispatch_max_batch times to dispatch + * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the + * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. + * + * This function doesn't have any locking restrictions and may be called under + * BPF locks (in the future when BPF introduces more flexible locking). + * + * @p is allowed to run for @slice. The scheduling path is triggered on slice + * exhaustion. If zero, the current residual slice is maintained. If + * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with + * scx_bpf_kick_cpu() to trigger scheduling. + */ +__bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, + u64 enq_flags) +{ + if (!scx_dispatch_preamble(p, enq_flags)) + return; + + if (slice) + p->scx.slice = slice; + else + p->scx.slice = p->scx.slice ?: 1; + + scx_dispatch_commit(p, dsq_id, enq_flags); +} + +/** + * scx_bpf_dispatch_vtime - Dispatch a task into the vtime priority queue of a DSQ + * @p: task_struct to dispatch + * @dsq_id: DSQ to dispatch to + * @slice: duration @p can run for in nsecs + * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ + * @enq_flags: SCX_ENQ_* + * + * Dispatch @p into the vtime priority queue of the DSQ identified by @dsq_id. + * Tasks queued into the priority queue are ordered by @vtime and always + * consumed after the tasks in the FIFO queue. All other aspects are identical + * to scx_bpf_dispatch(). + * + * @vtime ordering is according to time_before64() which considers wrapping. A + * numerically larger vtime may indicate an earlier position in the ordering and + * vice-versa. + */ +__bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, + u64 slice, u64 vtime, u64 enq_flags) +{ + if (!scx_dispatch_preamble(p, enq_flags)) + return; + + if (slice) + p->scx.slice = slice; + else + p->scx.slice = p->scx.slice ?: 1; + + p->scx.dsq_vtime = vtime; + + scx_dispatch_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) +BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) +BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) + +static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_enqueue_dispatch, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots + * + * Can only be called from ops.dispatch(). + */ +__bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) +{ + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return 0; + + return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); +} + +/** + * scx_bpf_dispatch_cancel - Cancel the latest dispatch + * + * Cancel the latest dispatch. Can be called multiple times to cancel further + * dispatches. Can only be called from ops.dispatch(). + */ +__bpf_kfunc void scx_bpf_dispatch_cancel(void) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return; + + if (dspc->cursor > 0) + dspc->cursor--; + else + scx_ops_error("dispatch buffer underflow"); +} + +/** + * scx_bpf_consume - Transfer a task from a DSQ to the current CPU's local DSQ + * @dsq_id: DSQ to consume + * + * Consume a task from the non-local DSQ identified by @dsq_id and transfer it + * to the current CPU's local DSQ for execution. Can only be called from + * ops.dispatch(). + * + * This function flushes the in-flight dispatches from scx_bpf_dispatch() before + * trying to consume the specified DSQ. It may also grab rq locks and thus can't + * be called under any BPF locks. + * + * Returns %true if a task has been consumed, %false if there isn't any task to + * consume. + */ +__bpf_kfunc bool scx_bpf_consume(u64 dsq_id) +{ + struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); + struct scx_dispatch_q *dsq; + + if (!scx_kf_allowed(SCX_KF_DISPATCH)) + return false; + + flush_dispatch_buf(dspc->rq); + + dsq = find_non_local_dsq(dsq_id); + if (unlikely(!dsq)) { + scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); + return false; + } + + if (consume_dispatch_q(dspc->rq, dsq)) { + /* + * A successfully consumed task can be dequeued before it starts + * running while the CPU is trying to migrate other dispatched + * tasks. Bump nr_tasks to tell balance_scx() to retry on empty + * local DSQ. + */ + dspc->nr_tasks++; + return true; + } else { + return false; + } +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_dispatch) +BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) +BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) +BTF_ID_FLAGS(func, scx_bpf_consume) +BTF_KFUNCS_END(scx_kfunc_ids_dispatch) + +static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_dispatch, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ + * + * Iterate over all of the tasks currently enqueued on the local DSQ of the + * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of + * processed tasks. Can only be called from ops.cpu_release(). + */ +__bpf_kfunc u32 scx_bpf_reenqueue_local(void) +{ + LIST_HEAD(tasks); + u32 nr_enqueued = 0; + struct rq *rq; + struct task_struct *p, *n; + + if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) + return 0; + + rq = cpu_rq(smp_processor_id()); + lockdep_assert_rq_held(rq); + + /* + * The BPF scheduler may choose to dispatch tasks back to + * @rq->scx.local_dsq. Move all candidate tasks off to a private list + * first to avoid processing the same tasks repeatedly. + */ + list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, + scx.dsq_list.node) { + /* + * If @p is being migrated, @p's current CPU may not agree with + * its allowed CPUs and the migration_cpu_stop is about to + * deactivate and re-activate @p anyway. Skip re-enqueueing. + * + * While racing sched property changes may also dequeue and + * re-enqueue a migrating task while its current CPU and allowed + * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to + * the current local DSQ for running tasks and thus are not + * visible to the BPF scheduler. + */ + if (p->migration_pending) + continue; + + dispatch_dequeue(rq, p); + list_add_tail(&p->scx.dsq_list.node, &tasks); + } + + list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { + list_del_init(&p->scx.dsq_list.node); + do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); + nr_enqueued++; + } + + return nr_enqueued; +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) +BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) +BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) + +static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_cpu_release, +}; + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_kick_cpu - Trigger reschedule on a CPU + * @cpu: cpu to kick + * @flags: %SCX_KICK_* flags + * + * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or + * trigger rescheduling on a busy CPU. This can be called from any online + * scx_ops operation and the actual kicking is performed asynchronously through + * an irq work. + */ +__bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) +{ + struct rq *this_rq; + unsigned long irq_flags; + + if (!ops_cpu_valid(cpu, NULL)) + return; + + /* + * While bypassing for PM ops, IRQ handling may not be online which can + * lead to irq_work_queue() malfunction such as infinite busy wait for + * IRQ status update. Suppress kicking. + */ + if (scx_ops_bypassing()) + return; + + local_irq_save(irq_flags); + + this_rq = this_rq(); + + /* + * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting + * rq locks. We can probably be smarter and avoid bouncing if called + * from ops which don't hold a rq lock. + */ + if (flags & SCX_KICK_IDLE) { + struct rq *target_rq = cpu_rq(cpu); + + if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) + scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); + + if (raw_spin_rq_trylock(target_rq)) { + if (can_skip_idle_kick(target_rq)) { + raw_spin_rq_unlock(target_rq); + goto out; + } + raw_spin_rq_unlock(target_rq); + } + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); + } else { + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); + + if (flags & SCX_KICK_PREEMPT) + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); + if (flags & SCX_KICK_WAIT) + cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); + } + + irq_work_queue(&this_rq->scx.kick_cpus_irq_work); +out: + local_irq_restore(irq_flags); +} + +/** + * scx_bpf_dsq_nr_queued - Return the number of queued tasks + * @dsq_id: id of the DSQ + * + * Return the number of tasks in the DSQ matching @dsq_id. If not found, + * -%ENOENT is returned. + */ +__bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) +{ + struct scx_dispatch_q *dsq; + s32 ret; + + preempt_disable(); + + if (dsq_id == SCX_DSQ_LOCAL) { + ret = READ_ONCE(this_rq()->scx.local_dsq.nr); + goto out; + } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { + s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; + + if (ops_cpu_valid(cpu, NULL)) { + ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); + goto out; + } + } else { + dsq = find_non_local_dsq(dsq_id); + if (dsq) { + ret = READ_ONCE(dsq->nr); + goto out; + } + } + ret = -ENOENT; +out: + preempt_enable(); + return ret; +} + +/** + * scx_bpf_destroy_dsq - Destroy a custom DSQ + * @dsq_id: DSQ to destroy + * + * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with + * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is + * empty and no further tasks are dispatched to it. Ignored if called on a DSQ + * which doesn't exist. Can be called from any online scx_ops operations. + */ +__bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) +{ + destroy_dsq(dsq_id); +} + +/** + * bpf_iter_scx_dsq_new - Create a DSQ iterator + * @it: iterator to initialize + * @dsq_id: DSQ to iterate + * @flags: %SCX_DSQ_ITER_* + * + * Initialize BPF iterator @it which can be used with bpf_for_each() to walk + * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes + * tasks which are already queued when this function is invoked. + */ +__bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, + u64 flags) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + + BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > + sizeof(struct bpf_iter_scx_dsq)); + BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != + __alignof__(struct bpf_iter_scx_dsq)); + + if (flags & ~__SCX_DSQ_ITER_ALL_FLAGS) + return -EINVAL; + + kit->dsq = find_non_local_dsq(dsq_id); + if (!kit->dsq) + return -ENOENT; + + INIT_LIST_HEAD(&kit->cursor.node); + kit->cursor.is_bpf_iter_cursor = true; + kit->dsq_seq = READ_ONCE(kit->dsq->seq); + kit->flags = flags; + + return 0; +} + +/** + * bpf_iter_scx_dsq_next - Progress a DSQ iterator + * @it: iterator to progress + * + * Return the next task. See bpf_iter_scx_dsq_new(). + */ +__bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + bool rev = kit->flags & SCX_DSQ_ITER_REV; + struct task_struct *p; + unsigned long flags; + + if (!kit->dsq) + return NULL; + + raw_spin_lock_irqsave(&kit->dsq->lock, flags); + + if (list_empty(&kit->cursor.node)) + p = NULL; + else + p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); + + /* + * Only tasks which were queued before the iteration started are + * visible. This bounds BPF iterations and guarantees that vtime never + * jumps in the other direction while iterating. + */ + do { + p = nldsq_next_task(kit->dsq, p, rev); + } while (p && unlikely(u32_before(kit->dsq_seq, p->scx.dsq_seq))); + + if (p) { + if (rev) + list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); + else + list_move(&kit->cursor.node, &p->scx.dsq_list.node); + } else { + list_del_init(&kit->cursor.node); + } + + raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); + + return p; +} + +/** + * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator + * @it: iterator to destroy + * + * Undo scx_iter_scx_dsq_new(). + */ +__bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) +{ + struct bpf_iter_scx_dsq_kern *kit = (void *)it; + + if (!kit->dsq) + return; + + if (!list_empty(&kit->cursor.node)) { + unsigned long flags; + + raw_spin_lock_irqsave(&kit->dsq->lock, flags); + list_del_init(&kit->cursor.node); + raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); + } + kit->dsq = NULL; +} + +__bpf_kfunc_end_defs(); + +static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, + char *fmt, unsigned long long *data, u32 data__sz) +{ + struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; + s32 ret; + + if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || + (data__sz && !data)) { + scx_ops_error("invalid data=%p and data__sz=%u", + (void *)data, data__sz); + return -EINVAL; + } + + ret = copy_from_kernel_nofault(data_buf, data, data__sz); + if (ret < 0) { + scx_ops_error("failed to read data fields (%d)", ret); + return ret; + } + + ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, + &bprintf_data); + if (ret < 0) { + scx_ops_error("format preparation failed (%d)", ret); + return ret; + } + + ret = bstr_printf(line_buf, line_size, fmt, + bprintf_data.bin_args); + bpf_bprintf_cleanup(&bprintf_data); + if (ret < 0) { + scx_ops_error("(\"%s\", %p, %u) failed to format", + fmt, data, data__sz); + return ret; + } + + return ret; +} + +static s32 bstr_format(struct scx_bstr_buf *buf, + char *fmt, unsigned long long *data, u32 data__sz) +{ + return __bstr_format(buf->data, buf->line, sizeof(buf->line), + fmt, data, data__sz); +} + +__bpf_kfunc_start_defs(); + +/** + * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. + * @exit_code: Exit value to pass to user space via struct scx_exit_info. + * @fmt: error message format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops + * disabling. + */ +__bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, + unsigned long long *data, u32 data__sz) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); + if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) + scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", + scx_exit_bstr_buf.line); + raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); +} + +/** + * scx_bpf_error_bstr - Indicate fatal error + * @fmt: error message format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * Indicate that the BPF scheduler encountered a fatal error and initiate ops + * disabling. + */ +__bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, + u32 data__sz) +{ + unsigned long flags; + + raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); + if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) + scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", + scx_exit_bstr_buf.line); + raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); +} + +/** + * scx_bpf_dump - Generate extra debug dump specific to the BPF scheduler + * @fmt: format string + * @data: format string parameters packaged using ___bpf_fill() macro + * @data__sz: @data len, must end in '__sz' for the verifier + * + * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and + * dump_task() to generate extra debug dump specific to the BPF scheduler. + * + * The extra dump may be multiple lines. A single line may be split over + * multiple calls. The last line is automatically terminated. + */ +__bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, + u32 data__sz) +{ + struct scx_dump_data *dd = &scx_dump_data; + struct scx_bstr_buf *buf = &dd->buf; + s32 ret; + + if (raw_smp_processor_id() != dd->cpu) { + scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); + return; + } + + /* append the formatted string to the line buf */ + ret = __bstr_format(buf->data, buf->line + dd->cursor, + sizeof(buf->line) - dd->cursor, fmt, data, data__sz); + if (ret < 0) { + dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", + dd->prefix, fmt, data, data__sz, ret); + return; + } + + dd->cursor += ret; + dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); + + if (!dd->cursor) + return; + + /* + * If the line buf overflowed or ends in a newline, flush it into the + * dump. This is to allow the caller to generate a single line over + * multiple calls. As ops_dump_flush() can also handle multiple lines in + * the line buf, the only case which can lead to an unexpected + * truncation is when the caller keeps generating newlines in the middle + * instead of the end consecutively. Don't do that. + */ + if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') + ops_dump_flush(); +} + +/** + * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU + * @cpu: CPU of interest + * + * Return the maximum relative capacity of @cpu in relation to the most + * performant CPU in the system. The return value is in the range [1, + * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). + */ +__bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) +{ + if (ops_cpu_valid(cpu, NULL)) + return arch_scale_cpu_capacity(cpu); + else + return SCX_CPUPERF_ONE; +} + +/** + * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU + * @cpu: CPU of interest + * + * Return the current relative performance of @cpu in relation to its maximum. + * The return value is in the range [1, %SCX_CPUPERF_ONE]. + * + * The current performance level of a CPU in relation to the maximum performance + * available in the system can be calculated as follows: + * + * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE + * + * The result is in the range [1, %SCX_CPUPERF_ONE]. + */ +__bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) +{ + if (ops_cpu_valid(cpu, NULL)) + return arch_scale_freq_capacity(cpu); + else + return SCX_CPUPERF_ONE; +} + +/** + * scx_bpf_cpuperf_set - Set the relative performance target of a CPU + * @cpu: CPU of interest + * @perf: target performance level [0, %SCX_CPUPERF_ONE] + * @flags: %SCX_CPUPERF_* flags + * + * Set the target performance level of @cpu to @perf. @perf is in linear + * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the + * schedutil cpufreq governor chooses the target frequency. + * + * The actual performance level chosen, CPU grouping, and the overhead and + * latency of the operations are dependent on the hardware and cpufreq driver in + * use. Consult hardware and cpufreq documentation for more information. The + * current performance level can be monitored using scx_bpf_cpuperf_cur(). + */ +__bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) +{ + if (unlikely(perf > SCX_CPUPERF_ONE)) { + scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); + return; + } + + if (ops_cpu_valid(cpu, NULL)) { + struct rq *rq = cpu_rq(cpu); + + rq->scx.cpuperf_target = perf; + + rcu_read_lock_sched_notrace(); + cpufreq_update_util(cpu_rq(cpu), 0); + rcu_read_unlock_sched_notrace(); + } +} + +/** + * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs + * + * All valid CPU IDs in the system are smaller than the returned value. + */ +__bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) +{ + return nr_cpu_ids; +} + +/** + * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) +{ + return cpu_possible_mask; +} + +/** + * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) +{ + return cpu_online_mask; +} + +/** + * scx_bpf_put_cpumask - Release a possible/online cpumask + * @cpumask: cpumask to release + */ +__bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) +{ + /* + * Empty function body because we aren't actually acquiring or releasing + * a reference to a global cpumask, which is read-only in the caller and + * is never released. The acquire / release semantics here are just used + * to make the cpumask is a trusted pointer in the caller. + */ +} + +/** + * scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking + * per-CPU cpumask. + * + * Returns NULL if idle tracking is not enabled, or running on a UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return cpu_none_mask; + } + +#ifdef CONFIG_SMP + return idle_masks.cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking, + * per-physical-core cpumask. Can be used to determine if an entire physical + * core is free. + * + * Returns NULL if idle tracking is not enabled, or running on a UP kernel. + */ +__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return cpu_none_mask; + } + +#ifdef CONFIG_SMP + if (sched_smt_active()) + return idle_masks.smt; + else + return idle_masks.cpu; +#else + return cpu_none_mask; +#endif +} + +/** + * scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to + * either the percpu, or SMT idle-tracking cpumask. + */ +__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask) +{ + /* + * Empty function body because we aren't actually acquiring or releasing + * a reference to a global idle cpumask, which is read-only in the + * caller and is never released. The acquire / release semantics here + * are just used to make the cpumask a trusted pointer in the caller. + */ +} + +/** + * scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state + * @cpu: cpu to test and clear idle for + * + * Returns %true if @cpu was idle and its idle state was successfully cleared. + * %false otherwise. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + */ +__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return false; + } + + if (ops_cpu_valid(cpu, NULL)) + return test_and_clear_cpu_idle(cpu); + else + return false; +} + +/** + * scx_bpf_pick_idle_cpu - Pick and claim an idle cpu + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu + * number on success. -%EBUSY if no matching cpu was found. + * + * Idle CPU tracking may race against CPU scheduling state transitions. For + * example, this function may return -%EBUSY as CPUs are transitioning into the + * idle state. If the caller then assumes that there will be dispatch events on + * the CPUs as they were all busy, the scheduler may end up stalling with CPUs + * idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and + * scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch + * event in the near future. + * + * Unavailable if ops.update_idle() is implemented and + * %SCX_OPS_KEEP_BUILTIN_IDLE is not set. + */ +__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + if (!static_branch_likely(&scx_builtin_idle_enabled)) { + scx_ops_error("built-in idle tracking is disabled"); + return -EBUSY; + } + + return scx_pick_idle_cpu(cpus_allowed, flags); +} + +/** + * scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU + * @cpus_allowed: Allowed cpumask + * @flags: %SCX_PICK_IDLE_CPU_* flags + * + * Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any + * CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu + * number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is + * empty. + * + * If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not + * set, this function can't tell which CPUs are idle and will always pick any + * CPU. + */ +__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed, + u64 flags) +{ + s32 cpu; + + if (static_branch_likely(&scx_builtin_idle_enabled)) { + cpu = scx_pick_idle_cpu(cpus_allowed, flags); + if (cpu >= 0) + return cpu; + } + + cpu = cpumask_any_distribute(cpus_allowed); + if (cpu < nr_cpu_ids) + return cpu; + else + return -EBUSY; +} + +/** + * scx_bpf_task_running - Is task currently running? + * @p: task of interest + */ +__bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) +{ + return task_rq(p)->curr == p; +} + +/** + * scx_bpf_task_cpu - CPU a task is currently associated with + * @p: task of interest + */ +__bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) +{ + return task_cpu(p); +} + +/** + * scx_bpf_cpu_rq - Fetch the rq of a CPU + * @cpu: CPU of the rq + */ +__bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) +{ + if (!ops_cpu_valid(cpu, NULL)) + return NULL; + + return cpu_rq(cpu); +} + +__bpf_kfunc_end_defs(); + +BTF_KFUNCS_START(scx_kfunc_ids_any) +BTF_ID_FLAGS(func, scx_bpf_kick_cpu) +BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) +BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) +BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) +BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) +BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) +BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) +BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) +BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) +BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) +BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) +BTF_ID_FLAGS(func, scx_bpf_cpu_rq) +BTF_KFUNCS_END(scx_kfunc_ids_any) + +static const struct btf_kfunc_id_set scx_kfunc_set_any = { + .owner = THIS_MODULE, + .set = &scx_kfunc_ids_any, +}; + +static int __init scx_init(void) +{ + int ret; + + /* + * kfunc registration can't be done from init_sched_ext_class() as + * register_btf_kfunc_id_set() needs most of the system to be up. + * + * Some kfuncs are context-sensitive and can only be called from + * specific SCX ops. They are grouped into BTF sets accordingly. + * Unfortunately, BPF currently doesn't have a way of enforcing such + * restrictions. Eventually, the verifier should be able to enforce + * them. For now, register them the same and make each kfunc explicitly + * check using scx_kf_allowed(). + */ + if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_sleepable)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, + &scx_kfunc_set_sleepable)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_select_cpu)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_enqueue_dispatch)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_dispatch)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_cpu_release)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, + &scx_kfunc_set_any)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, + &scx_kfunc_set_any)) || + (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, + &scx_kfunc_set_any))) { + pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); + return ret; + } + + ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); + if (ret) { + pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); + return ret; + } + + ret = register_pm_notifier(&scx_pm_notifier); + if (ret) { + pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); + return ret; + } + + scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); + if (!scx_kset) { + pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); + return -ENOMEM; + } + + ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); + if (ret < 0) { + pr_err("sched_ext: Failed to add global attributes\n"); + return ret; + } + + return 0; +} +__initcall(scx_init); diff --git a/kernel/sched/ext.h b/kernel/sched/ext.h new file mode 100644 index 000000000000..32d3a51f591a --- /dev/null +++ b/kernel/sched/ext.h @@ -0,0 +1,69 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#ifdef CONFIG_SCHED_CLASS_EXT + +void scx_tick(struct rq *rq); +void init_scx_entity(struct sched_ext_entity *scx); +void scx_pre_fork(struct task_struct *p); +int scx_fork(struct task_struct *p); +void scx_post_fork(struct task_struct *p); +void scx_cancel_fork(struct task_struct *p); +bool scx_can_stop_tick(struct rq *rq); +void scx_rq_activate(struct rq *rq); +void scx_rq_deactivate(struct rq *rq); +int scx_check_setscheduler(struct task_struct *p, int policy); +bool task_should_scx(struct task_struct *p); +void init_sched_ext_class(void); + +static inline u32 scx_cpuperf_target(s32 cpu) +{ + if (scx_enabled()) + return cpu_rq(cpu)->scx.cpuperf_target; + else + return 0; +} + +static inline bool task_on_scx(const struct task_struct *p) +{ + return scx_enabled() && p->sched_class == &ext_sched_class; +} + +#ifdef CONFIG_SCHED_CORE +bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, + bool in_fi); +#endif + +#else /* CONFIG_SCHED_CLASS_EXT */ + +static inline void scx_tick(struct rq *rq) {} +static inline void scx_pre_fork(struct task_struct *p) {} +static inline int scx_fork(struct task_struct *p) { return 0; } +static inline void scx_post_fork(struct task_struct *p) {} +static inline void scx_cancel_fork(struct task_struct *p) {} +static inline u32 scx_cpuperf_target(s32 cpu) { return 0; } +static inline bool scx_can_stop_tick(struct rq *rq) { return true; } +static inline void scx_rq_activate(struct rq *rq) {} +static inline void scx_rq_deactivate(struct rq *rq) {} +static inline int scx_check_setscheduler(struct task_struct *p, int policy) { return 0; } +static inline bool task_on_scx(const struct task_struct *p) { return false; } +static inline void init_sched_ext_class(void) {} + +#endif /* CONFIG_SCHED_CLASS_EXT */ + +#if defined(CONFIG_SCHED_CLASS_EXT) && defined(CONFIG_SMP) +void __scx_update_idle(struct rq *rq, bool idle); + +static inline void scx_update_idle(struct rq *rq, bool idle) +{ + if (scx_enabled()) + __scx_update_idle(rq, idle); +} +#else +static inline void scx_update_idle(struct rq *rq, bool idle) {} +#endif diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 1fee282d40aa..32f68ec1e528 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -3848,7 +3848,8 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, } } -void reweight_task(struct task_struct *p, const struct load_weight *lw) +static void reweight_task_fair(struct rq *rq, struct task_struct *p, + const struct load_weight *lw) { struct sched_entity *se = &p->se; struct cfs_rq *cfs_rq = cfs_rq_of(se); @@ -8403,7 +8404,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int * Batch and idle tasks do not preempt non-idle tasks (their preemption * is driven by the tick): */ - if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) + if (unlikely(!normal_policy(p->policy)) || !sched_feat(WAKEUP_PREEMPTION)) return; find_matching_se(&se, &pse); @@ -9360,28 +9361,18 @@ static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) { static bool __update_blocked_others(struct rq *rq, bool *done) { - const struct sched_class *curr_class; - u64 now = rq_clock_pelt(rq); - unsigned long hw_pressure; - bool decayed; + bool updated; /* * update_load_avg() can call cpufreq_update_util(). Make sure that RT, * DL and IRQ signals have been updated before updating CFS. */ - curr_class = rq->curr->sched_class; - - hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); - - decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | - update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | - update_hw_load_avg(now, rq, hw_pressure) | - update_irq_load_avg(rq, 0); + updated = update_other_load_avgs(rq); if (others_have_blocked(rq)) *done = false; - return decayed; + return updated; } #ifdef CONFIG_FAIR_GROUP_SCHED @@ -13220,6 +13211,7 @@ DEFINE_SCHED_CLASS(fair) = { .task_tick = task_tick_fair, .task_fork = task_fork_fair, + .reweight_task = reweight_task_fair, .prio_changed = prio_changed_fair, .switched_from = switched_from_fair, .switched_to = switched_to_fair, diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c index 6135fbe83d68..3b6540cc436a 100644 --- a/kernel/sched/idle.c +++ b/kernel/sched/idle.c @@ -458,11 +458,13 @@ static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags) static void put_prev_task_idle(struct rq *rq, struct task_struct *prev) { + scx_update_idle(rq, false); } static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) { update_idle_core(rq); + scx_update_idle(rq, true); schedstat_inc(rq->sched_goidle); } diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 556466836cd5..fbcd2ddbf887 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -187,9 +187,19 @@ static inline int idle_policy(int policy) { return policy == SCHED_IDLE; } + +static inline int normal_policy(int policy) +{ +#ifdef CONFIG_SCHED_CLASS_EXT + if (policy == SCHED_EXT) + return true; +#endif + return policy == SCHED_NORMAL; +} + static inline int fair_policy(int policy) { - return policy == SCHED_NORMAL || policy == SCHED_BATCH; + return normal_policy(policy) || policy == SCHED_BATCH; } static inline int rt_policy(int policy) @@ -237,6 +247,24 @@ static inline void update_avg(u64 *avg, u64 sample) #define shr_bound(val, shift) \ (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) +/* + * cgroup weight knobs should use the common MIN, DFL and MAX values which are + * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it + * maps pretty well onto the shares value used by scheduler and the round-trip + * conversions preserve the original value over the entire range. + */ +static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) +{ + return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); +} + +static inline unsigned long sched_weight_to_cgroup(unsigned long weight) +{ + return clamp_t(unsigned long, + DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), + CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); +} + /* * !! For sched_setattr_nocheck() (kernel) only !! * @@ -475,6 +503,11 @@ static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) return walk_tg_tree_from(&root_task_group, down, up, data); } +static inline struct task_group *css_tg(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct task_group, css) : NULL; +} + extern int tg_nop(struct task_group *tg, void *data); #ifdef CONFIG_FAIR_GROUP_SCHED @@ -583,6 +616,12 @@ do { \ # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) +struct rq; +struct balance_callback { + struct balance_callback *next; + void (*func)(struct rq *rq); +}; + /* CFS-related fields in a runqueue */ struct cfs_rq { struct load_weight load; @@ -691,6 +730,42 @@ struct cfs_rq { #endif /* CONFIG_FAIR_GROUP_SCHED */ }; +#ifdef CONFIG_SCHED_CLASS_EXT +/* scx_rq->flags, protected by the rq lock */ +enum scx_rq_flags { + /* + * A hotplugged CPU starts scheduling before rq_online_scx(). Track + * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called + * only while the BPF scheduler considers the CPU to be online. + */ + SCX_RQ_ONLINE = 1 << 0, + SCX_RQ_CAN_STOP_TICK = 1 << 1, + + SCX_RQ_IN_WAKEUP = 1 << 16, + SCX_RQ_IN_BALANCE = 1 << 17, +}; + +struct scx_rq { + struct scx_dispatch_q local_dsq; + struct list_head runnable_list; /* runnable tasks on this rq */ + struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ + unsigned long ops_qseq; + u64 extra_enq_flags; /* see move_task_to_local_dsq() */ + u32 nr_running; + u32 flags; + u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ + bool cpu_released; + cpumask_var_t cpus_to_kick; + cpumask_var_t cpus_to_kick_if_idle; + cpumask_var_t cpus_to_preempt; + cpumask_var_t cpus_to_wait; + unsigned long pnt_seq; + struct balance_callback deferred_bal_cb; + struct irq_work deferred_irq_work; + struct irq_work kick_cpus_irq_work; +}; +#endif /* CONFIG_SCHED_CLASS_EXT */ + static inline int rt_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; @@ -988,12 +1063,6 @@ struct uclamp_rq { DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); #endif /* CONFIG_UCLAMP_TASK */ -struct rq; -struct balance_callback { - struct balance_callback *next; - void (*func)(struct rq *rq); -}; - /* * This is the main, per-CPU runqueue data structure. * @@ -1036,6 +1105,9 @@ struct rq { struct cfs_rq cfs; struct rt_rq rt; struct dl_rq dl; +#ifdef CONFIG_SCHED_CLASS_EXT + struct scx_rq scx; +#endif #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this CPU: */ @@ -2278,6 +2350,8 @@ struct sched_class { void (*put_prev_task)(struct rq *rq, struct task_struct *p); void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); + void (*switch_class)(struct rq *rq, struct task_struct *next); + #ifdef CONFIG_SMP int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); @@ -2305,8 +2379,11 @@ struct sched_class { * cannot assume the switched_from/switched_to pair is serialized by * rq->lock. They are however serialized by p->pi_lock. */ + void (*switching_to) (struct rq *this_rq, struct task_struct *task); void (*switched_from)(struct rq *this_rq, struct task_struct *task); void (*switched_to) (struct rq *this_rq, struct task_struct *task); + void (*reweight_task)(struct rq *this_rq, struct task_struct *task, + const struct load_weight *lw); void (*prio_changed) (struct rq *this_rq, struct task_struct *task, int oldprio); @@ -2355,19 +2432,54 @@ const struct sched_class name##_sched_class \ extern struct sched_class __sched_class_highest[]; extern struct sched_class __sched_class_lowest[]; +extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; +extern const struct sched_class rt_sched_class; +extern const struct sched_class fair_sched_class; +extern const struct sched_class idle_sched_class; + +#ifdef CONFIG_SCHED_CLASS_EXT +extern const struct sched_class ext_sched_class; + +DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */ +DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ + +#define scx_enabled() static_branch_unlikely(&__scx_ops_enabled) +#define scx_switched_all() static_branch_unlikely(&__scx_switched_all) +#else /* !CONFIG_SCHED_CLASS_EXT */ +#define scx_enabled() false +#define scx_switched_all() false +#endif /* !CONFIG_SCHED_CLASS_EXT */ + +/* + * Iterate only active classes. SCX can take over all fair tasks or be + * completely disabled. If the former, skip fair. If the latter, skip SCX. + */ +static inline const struct sched_class *next_active_class(const struct sched_class *class) +{ + class++; +#ifdef CONFIG_SCHED_CLASS_EXT + if (scx_switched_all() && class == &fair_sched_class) + class++; + if (!scx_enabled() && class == &ext_sched_class) + class++; +#endif + return class; +} + #define for_class_range(class, _from, _to) \ for (class = (_from); class < (_to); class++) #define for_each_class(class) \ for_class_range(class, __sched_class_highest, __sched_class_lowest) -#define sched_class_above(_a, _b) ((_a) < (_b)) +#define for_active_class_range(class, _from, _to) \ + for (class = (_from); class != (_to); class = next_active_class(class)) -extern const struct sched_class stop_sched_class; -extern const struct sched_class dl_sched_class; -extern const struct sched_class rt_sched_class; -extern const struct sched_class fair_sched_class; -extern const struct sched_class idle_sched_class; +#define for_each_active_class(class) \ + for_active_class_range(class, __sched_class_highest, __sched_class_lowest) + +#define sched_class_above(_a, _b) ((_a) < (_b)) static inline bool sched_stop_runnable(struct rq *rq) { @@ -2464,7 +2576,7 @@ extern void init_sched_dl_class(void); extern void init_sched_rt_class(void); extern void init_sched_fair_class(void); -extern void reweight_task(struct task_struct *p, const struct load_weight *lw); +extern void __setscheduler_prio(struct task_struct *p, int prio); extern void resched_curr(struct rq *rq); extern void resched_cpu(int cpu); @@ -2542,6 +2654,12 @@ static inline void sub_nr_running(struct rq *rq, unsigned count) extern void activate_task(struct rq *rq, struct task_struct *p, int flags); extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); +extern void check_class_changing(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class); +extern void check_class_changed(struct rq *rq, struct task_struct *p, + const struct sched_class *prev_class, + int oldprio); + extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); #if defined(CONFIG_PREEMPT_RT) || defined(CONFIG_CACHY) @@ -3007,6 +3125,9 @@ static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} #endif #ifdef CONFIG_SMP + +bool update_other_load_avgs(struct rq *rq); + unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, unsigned long *min, unsigned long *max); @@ -3049,6 +3170,8 @@ static inline unsigned long cpu_util_rt(struct rq *rq) { return READ_ONCE(rq->avg_rt.util_avg); } +#else /* !CONFIG_SMP */ +static inline bool update_other_load_avgs(struct rq *rq) { return false; } #endif #ifdef CONFIG_UCLAMP_TASK @@ -3481,4 +3604,24 @@ static inline void init_sched_mm_cid(struct task_struct *t) { } extern u64 avg_vruntime(struct cfs_rq *cfs_rq); extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); +#ifdef CONFIG_SCHED_CLASS_EXT +/* + * Used by SCX in the enable/disable paths to move tasks between sched_classes + * and establish invariants. + */ +struct sched_enq_and_set_ctx { + struct task_struct *p; + int queue_flags; + bool queued; + bool running; +}; + +void sched_deq_and_put_task(struct task_struct *p, int queue_flags, + struct sched_enq_and_set_ctx *ctx); +void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); + +#endif /* CONFIG_SCHED_CLASS_EXT */ + +#include "ext.h" + #endif /* _KERNEL_SCHED_SCHED_H */ diff --git a/lib/dump_stack.c b/lib/dump_stack.c index 222c6d6c8281..9581ef4efec5 100644 --- a/lib/dump_stack.c +++ b/lib/dump_stack.c @@ -68,6 +68,7 @@ void dump_stack_print_info(const char *log_lvl) print_worker_info(log_lvl, current); print_stop_info(log_lvl, current); + print_scx_info(log_lvl, current); } /** diff --git a/tools/Makefile b/tools/Makefile index 276f5d0d53a4..278d24723b74 100644 --- a/tools/Makefile +++ b/tools/Makefile @@ -28,6 +28,7 @@ help: @echo ' pci - PCI tools' @echo ' perf - Linux performance measurement and analysis tool' @echo ' selftests - various kernel selftests' + @echo ' sched_ext - sched_ext example schedulers' @echo ' bootconfig - boot config tool' @echo ' spi - spi tools' @echo ' tmon - thermal monitoring and tuning tool' @@ -91,6 +92,9 @@ perf: FORCE $(Q)mkdir -p $(PERF_O) . $(Q)$(MAKE) --no-print-directory -C perf O=$(PERF_O) subdir= +sched_ext: FORCE + $(call descend,sched_ext) + selftests: FORCE $(call descend,testing/$@) @@ -184,6 +188,9 @@ perf_clean: $(Q)mkdir -p $(PERF_O) . $(Q)$(MAKE) --no-print-directory -C perf O=$(PERF_O) subdir= clean +sched_ext_clean: + $(call descend,sched_ext,clean) + selftests_clean: $(call descend,testing/$(@:_clean=),clean) @@ -213,6 +220,7 @@ clean: acpi_clean counter_clean cpupower_clean hv_clean firewire_clean \ mm_clean bpf_clean iio_clean x86_energy_perf_policy_clean tmon_clean \ freefall_clean build_clean libbpf_clean libsubcmd_clean \ gpio_clean objtool_clean leds_clean wmi_clean pci_clean firmware_clean debugging_clean \ - intel-speed-select_clean tracing_clean thermal_clean thermometer_clean thermal-engine_clean + intel-speed-select_clean tracing_clean thermal_clean thermometer_clean thermal-engine_clean \ + sched_ext_clean .PHONY: FORCE diff --git a/tools/sched_ext/.gitignore b/tools/sched_ext/.gitignore new file mode 100644 index 000000000000..d6264fe1c8cd --- /dev/null +++ b/tools/sched_ext/.gitignore @@ -0,0 +1,2 @@ +tools/ +build/ diff --git a/tools/sched_ext/Makefile b/tools/sched_ext/Makefile new file mode 100644 index 000000000000..bf7e108f5ae1 --- /dev/null +++ b/tools/sched_ext/Makefile @@ -0,0 +1,246 @@ +# SPDX-License-Identifier: GPL-2.0 +# Copyright (c) 2022 Meta Platforms, Inc. and affiliates. +include ../build/Build.include +include ../scripts/Makefile.arch +include ../scripts/Makefile.include + +all: all_targets + +ifneq ($(LLVM),) +ifneq ($(filter %/,$(LLVM)),) +LLVM_PREFIX := $(LLVM) +else ifneq ($(filter -%,$(LLVM)),) +LLVM_SUFFIX := $(LLVM) +endif + +CLANG_TARGET_FLAGS_arm := arm-linux-gnueabi +CLANG_TARGET_FLAGS_arm64 := aarch64-linux-gnu +CLANG_TARGET_FLAGS_hexagon := hexagon-linux-musl +CLANG_TARGET_FLAGS_m68k := m68k-linux-gnu +CLANG_TARGET_FLAGS_mips := mipsel-linux-gnu +CLANG_TARGET_FLAGS_powerpc := powerpc64le-linux-gnu +CLANG_TARGET_FLAGS_riscv := riscv64-linux-gnu +CLANG_TARGET_FLAGS_s390 := s390x-linux-gnu +CLANG_TARGET_FLAGS_x86 := x86_64-linux-gnu +CLANG_TARGET_FLAGS := $(CLANG_TARGET_FLAGS_$(ARCH)) + +ifeq ($(CROSS_COMPILE),) +ifeq ($(CLANG_TARGET_FLAGS),) +$(error Specify CROSS_COMPILE or add '--target=' option to lib.mk) +else +CLANG_FLAGS += --target=$(CLANG_TARGET_FLAGS) +endif # CLANG_TARGET_FLAGS +else +CLANG_FLAGS += --target=$(notdir $(CROSS_COMPILE:%-=%)) +endif # CROSS_COMPILE + +CC := $(LLVM_PREFIX)clang$(LLVM_SUFFIX) $(CLANG_FLAGS) -fintegrated-as +else +CC := $(CROSS_COMPILE)gcc +endif # LLVM + +CURDIR := $(abspath .) +TOOLSDIR := $(abspath ..) +LIBDIR := $(TOOLSDIR)/lib +BPFDIR := $(LIBDIR)/bpf +TOOLSINCDIR := $(TOOLSDIR)/include +BPFTOOLDIR := $(TOOLSDIR)/bpf/bpftool +APIDIR := $(TOOLSINCDIR)/uapi +GENDIR := $(abspath ../../include/generated) +GENHDR := $(GENDIR)/autoconf.h + +ifeq ($(O),) +OUTPUT_DIR := $(CURDIR)/build +else +OUTPUT_DIR := $(O)/build +endif # O +OBJ_DIR := $(OUTPUT_DIR)/obj +INCLUDE_DIR := $(OUTPUT_DIR)/include +BPFOBJ_DIR := $(OBJ_DIR)/libbpf +SCXOBJ_DIR := $(OBJ_DIR)/sched_ext +BINDIR := $(OUTPUT_DIR)/bin +BPFOBJ := $(BPFOBJ_DIR)/libbpf.a +ifneq ($(CROSS_COMPILE),) +HOST_BUILD_DIR := $(OBJ_DIR)/host +HOST_OUTPUT_DIR := host-tools +HOST_INCLUDE_DIR := $(HOST_OUTPUT_DIR)/include +else +HOST_BUILD_DIR := $(OBJ_DIR) +HOST_OUTPUT_DIR := $(OUTPUT_DIR) +HOST_INCLUDE_DIR := $(INCLUDE_DIR) +endif +HOST_BPFOBJ := $(HOST_BUILD_DIR)/libbpf/libbpf.a +RESOLVE_BTFIDS := $(HOST_BUILD_DIR)/resolve_btfids/resolve_btfids +DEFAULT_BPFTOOL := $(HOST_OUTPUT_DIR)/sbin/bpftool + +VMLINUX_BTF_PATHS ?= $(if $(O),$(O)/vmlinux) \ + $(if $(KBUILD_OUTPUT),$(KBUILD_OUTPUT)/vmlinux) \ + ../../vmlinux \ + /sys/kernel/btf/vmlinux \ + /boot/vmlinux-$(shell uname -r) +VMLINUX_BTF ?= $(abspath $(firstword $(wildcard $(VMLINUX_BTF_PATHS)))) +ifeq ($(VMLINUX_BTF),) +$(error Cannot find a vmlinux for VMLINUX_BTF at any of "$(VMLINUX_BTF_PATHS)") +endif + +BPFTOOL ?= $(DEFAULT_BPFTOOL) + +ifneq ($(wildcard $(GENHDR)),) + GENFLAGS := -DHAVE_GENHDR +endif + +CFLAGS += -g -O2 -rdynamic -pthread -Wall -Werror $(GENFLAGS) \ + -I$(INCLUDE_DIR) -I$(GENDIR) -I$(LIBDIR) \ + -I$(TOOLSINCDIR) -I$(APIDIR) -I$(CURDIR)/include + +# Silence some warnings when compiled with clang +ifneq ($(LLVM),) +CFLAGS += -Wno-unused-command-line-argument +endif + +LDFLAGS = -lelf -lz -lpthread + +IS_LITTLE_ENDIAN = $(shell $(CC) -dM -E - &1 \ + | sed -n '/<...> search starts here:/,/End of search list./{ s| \(/.*\)|-idirafter \1|p }') \ +$(shell $(1) -dM -E - $@ +else + $(call msg,CP,,$@) + $(Q)cp "$(VMLINUX_H)" $@ +endif + +$(SCXOBJ_DIR)/%.bpf.o: %.bpf.c $(INCLUDE_DIR)/vmlinux.h include/scx/*.h \ + | $(BPFOBJ) $(SCXOBJ_DIR) + $(call msg,CLNG-BPF,,$(notdir $@)) + $(Q)$(CLANG) $(BPF_CFLAGS) -target bpf -c $< -o $@ + +$(INCLUDE_DIR)/%.bpf.skel.h: $(SCXOBJ_DIR)/%.bpf.o $(INCLUDE_DIR)/vmlinux.h $(BPFTOOL) + $(eval sched=$(notdir $@)) + $(call msg,GEN-SKEL,,$(sched)) + $(Q)$(BPFTOOL) gen object $(<:.o=.linked1.o) $< + $(Q)$(BPFTOOL) gen object $(<:.o=.linked2.o) $(<:.o=.linked1.o) + $(Q)$(BPFTOOL) gen object $(<:.o=.linked3.o) $(<:.o=.linked2.o) + $(Q)diff $(<:.o=.linked2.o) $(<:.o=.linked3.o) + $(Q)$(BPFTOOL) gen skeleton $(<:.o=.linked3.o) name $(subst .bpf.skel.h,,$(sched)) > $@ + $(Q)$(BPFTOOL) gen subskeleton $(<:.o=.linked3.o) name $(subst .bpf.skel.h,,$(sched)) > $(@:.skel.h=.subskel.h) + +SCX_COMMON_DEPS := include/scx/common.h include/scx/user_exit_info.h | $(BINDIR) + +c-sched-targets = scx_simple scx_qmap scx_central + +$(addprefix $(BINDIR)/,$(c-sched-targets)): \ + $(BINDIR)/%: \ + $(filter-out %.bpf.c,%.c) \ + $(INCLUDE_DIR)/%.bpf.skel.h \ + $(SCX_COMMON_DEPS) + $(eval sched=$(notdir $@)) + $(CC) $(CFLAGS) -c $(sched).c -o $(SCXOBJ_DIR)/$(sched).o + $(CC) -o $@ $(SCXOBJ_DIR)/$(sched).o $(HOST_BPFOBJ) $(LDFLAGS) + +$(c-sched-targets): %: $(BINDIR)/% + +install: all + $(Q)mkdir -p $(DESTDIR)/usr/local/bin/ + $(Q)cp $(BINDIR)/* $(DESTDIR)/usr/local/bin/ + +clean: + rm -rf $(OUTPUT_DIR) $(HOST_OUTPUT_DIR) + rm -f *.o *.bpf.o *.bpf.skel.h *.bpf.subskel.h + rm -f $(c-sched-targets) + +help: + @echo 'Building targets' + @echo '================' + @echo '' + @echo ' all - Compile all schedulers' + @echo '' + @echo 'Alternatively, you may compile individual schedulers:' + @echo '' + @printf ' %s\n' $(c-sched-targets) + @echo '' + @echo 'For any scheduler build target, you may specify an alternative' + @echo 'build output path with the O= environment variable. For example:' + @echo '' + @echo ' O=/tmp/sched_ext make all' + @echo '' + @echo 'will compile all schedulers, and emit the build artifacts to' + @echo '/tmp/sched_ext/build.' + @echo '' + @echo '' + @echo 'Installing targets' + @echo '==================' + @echo '' + @echo ' install - Compile and install all schedulers to /usr/bin.' + @echo ' You may specify the DESTDIR= environment variable' + @echo ' to indicate a prefix for /usr/bin. For example:' + @echo '' + @echo ' DESTDIR=/tmp/sched_ext make install' + @echo '' + @echo ' will build the schedulers in CWD/build, and' + @echo ' install the schedulers to /tmp/sched_ext/usr/bin.' + @echo '' + @echo '' + @echo 'Cleaning targets' + @echo '================' + @echo '' + @echo ' clean - Remove all generated files' + +all_targets: $(c-sched-targets) + +.PHONY: all all_targets $(c-sched-targets) clean help + +# delete failed targets +.DELETE_ON_ERROR: + +# keep intermediate (.bpf.skel.h, .bpf.o, etc) targets +.SECONDARY: diff --git a/tools/sched_ext/README.md b/tools/sched_ext/README.md new file mode 100644 index 000000000000..8efe70cc4363 --- /dev/null +++ b/tools/sched_ext/README.md @@ -0,0 +1,258 @@ +SCHED_EXT EXAMPLE SCHEDULERS +============================ + +# Introduction + +This directory contains a number of example sched_ext schedulers. These +schedulers are meant to provide examples of different types of schedulers +that can be built using sched_ext, and illustrate how various features of +sched_ext can be used. + +Some of the examples are performant, production-ready schedulers. That is, for +the correct workload and with the correct tuning, they may be deployed in a +production environment with acceptable or possibly even improved performance. +Others are just examples that in practice, would not provide acceptable +performance (though they could be improved to get there). + +This README will describe these example schedulers, including describing the +types of workloads or scenarios they're designed to accommodate, and whether or +not they're production ready. For more details on any of these schedulers, +please see the header comment in their .bpf.c file. + + +# Compiling the examples + +There are a few toolchain dependencies for compiling the example schedulers. + +## Toolchain dependencies + +1. clang >= 16.0.0 + +The schedulers are BPF programs, and therefore must be compiled with clang. gcc +is actively working on adding a BPF backend compiler as well, but are still +missing some features such as BTF type tags which are necessary for using +kptrs. + +2. pahole >= 1.25 + +You may need pahole in order to generate BTF from DWARF. + +3. rust >= 1.70.0 + +Rust schedulers uses features present in the rust toolchain >= 1.70.0. You +should be able to use the stable build from rustup, but if that doesn't +work, try using the rustup nightly build. + +There are other requirements as well, such as make, but these are the main / +non-trivial ones. + +## Compiling the kernel + +In order to run a sched_ext scheduler, you'll have to run a kernel compiled +with the patches in this repository, and with a minimum set of necessary +Kconfig options: + +``` +CONFIG_BPF=y +CONFIG_SCHED_CLASS_EXT=y +CONFIG_BPF_SYSCALL=y +CONFIG_BPF_JIT=y +CONFIG_DEBUG_INFO_BTF=y +``` + +It's also recommended that you also include the following Kconfig options: + +``` +CONFIG_BPF_JIT_ALWAYS_ON=y +CONFIG_BPF_JIT_DEFAULT_ON=y +CONFIG_PAHOLE_HAS_SPLIT_BTF=y +CONFIG_PAHOLE_HAS_BTF_TAG=y +``` + +There is a `Kconfig` file in this directory whose contents you can append to +your local `.config` file, as long as there are no conflicts with any existing +options in the file. + +## Getting a vmlinux.h file + +You may notice that most of the example schedulers include a "vmlinux.h" file. +This is a large, auto-generated header file that contains all of the types +defined in some vmlinux binary that was compiled with +[BTF](https://docs.kernel.org/bpf/btf.html) (i.e. with the BTF-related Kconfig +options specified above). + +The header file is created using `bpftool`, by passing it a vmlinux binary +compiled with BTF as follows: + +```bash +$ bpftool btf dump file /path/to/vmlinux format c > vmlinux.h +``` + +`bpftool` analyzes all of the BTF encodings in the binary, and produces a +header file that can be included by BPF programs to access those types. For +example, using vmlinux.h allows a scheduler to access fields defined directly +in vmlinux as follows: + +```c +#include "vmlinux.h" +// vmlinux.h is also implicitly included by scx_common.bpf.h. +#include "scx_common.bpf.h" + +/* + * vmlinux.h provides definitions for struct task_struct and + * struct scx_enable_args. + */ +void BPF_STRUCT_OPS(example_enable, struct task_struct *p, + struct scx_enable_args *args) +{ + bpf_printk("Task %s enabled in example scheduler", p->comm); +} + +// vmlinux.h provides the definition for struct sched_ext_ops. +SEC(".struct_ops.link") +struct sched_ext_ops example_ops { + .enable = (void *)example_enable, + .name = "example", +} +``` + +The scheduler build system will generate this vmlinux.h file as part of the +scheduler build pipeline. It looks for a vmlinux file in the following +dependency order: + +1. If the O= environment variable is defined, at `$O/vmlinux` +2. If the KBUILD_OUTPUT= environment variable is defined, at + `$KBUILD_OUTPUT/vmlinux` +3. At `../../vmlinux` (i.e. at the root of the kernel tree where you're + compiling the schedulers) +3. `/sys/kernel/btf/vmlinux` +4. `/boot/vmlinux-$(uname -r)` + +In other words, if you have compiled a kernel in your local repo, its vmlinux +file will be used to generate vmlinux.h. Otherwise, it will be the vmlinux of +the kernel you're currently running on. This means that if you're running on a +kernel with sched_ext support, you may not need to compile a local kernel at +all. + +### Aside on CO-RE + +One of the cooler features of BPF is that it supports +[CO-RE](https://nakryiko.com/posts/bpf-core-reference-guide/) (Compile Once Run +Everywhere). This feature allows you to reference fields inside of structs with +types defined internal to the kernel, and not have to recompile if you load the +BPF program on a different kernel with the field at a different offset. In our +example above, we print out a task name with `p->comm`. CO-RE would perform +relocations for that access when the program is loaded to ensure that it's +referencing the correct offset for the currently running kernel. + +## Compiling the schedulers + +Once you have your toolchain setup, and a vmlinux that can be used to generate +a full vmlinux.h file, you can compile the schedulers using `make`: + +```bash +$ make -j($nproc) +``` + +# Example schedulers + +This directory contains the following example schedulers. These schedulers are +for testing and demonstrating different aspects of sched_ext. While some may be +useful in limited scenarios, they are not intended to be practical. + +For more scheduler implementations, tools and documentation, visit +https://github.com/sched-ext/scx. + +## scx_simple + +A simple scheduler that provides an example of a minimal sched_ext scheduler. +scx_simple can be run in either global weighted vtime mode, or FIFO mode. + +Though very simple, in limited scenarios, this scheduler can perform reasonably +well on single-socket systems with a unified L3 cache. + +## scx_qmap + +Another simple, yet slightly more complex scheduler that provides an example of +a basic weighted FIFO queuing policy. It also provides examples of some common +useful BPF features, such as sleepable per-task storage allocation in the +`ops.prep_enable()` callback, and using the `BPF_MAP_TYPE_QUEUE` map type to +enqueue tasks. It also illustrates how core-sched support could be implemented. + +## scx_central + +A "central" scheduler where scheduling decisions are made from a single CPU. +This scheduler illustrates how scheduling decisions can be dispatched from a +single CPU, allowing other cores to run with infinite slices, without timer +ticks, and without having to incur the overhead of making scheduling decisions. + +The approach demonstrated by this scheduler may be useful for any workload that +benefits from minimizing scheduling overhead and timer ticks. An example of +where this could be particularly useful is running VMs, where running with +infinite slices and no timer ticks allows the VM to avoid unnecessary expensive +vmexits. + + +# Troubleshooting + +There are a number of common issues that you may run into when building the +schedulers. We'll go over some of the common ones here. + +## Build Failures + +### Old version of clang + +``` +error: static assertion failed due to requirement 'SCX_DSQ_FLAG_BUILTIN': bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole + _Static_assert(SCX_DSQ_FLAG_BUILTIN, + ^~~~~~~~~~~~~~~~~~~~ +1 error generated. +``` + +This means you built the kernel or the schedulers with an older version of +clang than what's supported (i.e. older than 16.0.0). To remediate this: + +1. `which clang` to make sure you're using a sufficiently new version of clang. + +2. `make fullclean` in the root path of the repository, and rebuild the kernel + and schedulers. + +3. Rebuild the kernel, and then your example schedulers. + +The schedulers are also cleaned if you invoke `make mrproper` in the root +directory of the tree. + +### Stale kernel build / incomplete vmlinux.h file + +As described above, you'll need a `vmlinux.h` file that was generated from a +vmlinux built with BTF, and with sched_ext support enabled. If you don't, +you'll see errors such as the following which indicate that a type being +referenced in a scheduler is unknown: + +``` +/path/to/sched_ext/tools/sched_ext/user_exit_info.h:25:23: note: forward declaration of 'struct scx_exit_info' + +const struct scx_exit_info *ei) + +^ +``` + +In order to resolve this, please follow the steps above in +[Getting a vmlinux.h file](#getting-a-vmlinuxh-file) in order to ensure your +schedulers are using a vmlinux.h file that includes the requisite types. + +## Misc + +### llvm: [OFF] + +You may see the following output when building the schedulers: + +``` +Auto-detecting system features: +... clang-bpf-co-re: [ on ] +... llvm: [ OFF ] +... libcap: [ on ] +... libbfd: [ on ] +``` + +Seeing `llvm: [ OFF ]` here is not an issue. You can safely ignore. diff --git a/tools/sched_ext/include/bpf-compat/gnu/stubs.h b/tools/sched_ext/include/bpf-compat/gnu/stubs.h new file mode 100644 index 000000000000..ad7d139ce907 --- /dev/null +++ b/tools/sched_ext/include/bpf-compat/gnu/stubs.h @@ -0,0 +1,11 @@ +/* + * Dummy gnu/stubs.h. clang can end up including /usr/include/gnu/stubs.h when + * compiling BPF files although its content doesn't play any role. The file in + * turn includes stubs-64.h or stubs-32.h depending on whether __x86_64__ is + * defined. When compiling a BPF source, __x86_64__ isn't set and thus + * stubs-32.h is selected. However, the file is not there if the system doesn't + * have 32bit glibc devel package installed leading to a build failure. + * + * The problem is worked around by making this file available in the include + * search paths before the system one when building BPF. + */ diff --git a/tools/sched_ext/include/scx/common.bpf.h b/tools/sched_ext/include/scx/common.bpf.h new file mode 100644 index 000000000000..20280df62857 --- /dev/null +++ b/tools/sched_ext/include/scx/common.bpf.h @@ -0,0 +1,401 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#ifndef __SCX_COMMON_BPF_H +#define __SCX_COMMON_BPF_H + +#include "vmlinux.h" +#include +#include +#include +#include "user_exit_info.h" + +#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ +#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ +#define PF_EXITING 0x00000004 +#define CLOCK_MONOTONIC 1 + +/* + * Earlier versions of clang/pahole lost upper 32bits in 64bit enums which can + * lead to really confusing misbehaviors. Let's trigger a build failure. + */ +static inline void ___vmlinux_h_sanity_check___(void) +{ + _Static_assert(SCX_DSQ_FLAG_BUILTIN, + "bpftool generated vmlinux.h is missing high bits for 64bit enums, upgrade clang and pahole"); +} + +s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) __ksym; +s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, bool *is_idle) __ksym; +void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, u64 enq_flags) __ksym; +void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags) __ksym; +u32 scx_bpf_dispatch_nr_slots(void) __ksym; +void scx_bpf_dispatch_cancel(void) __ksym; +bool scx_bpf_consume(u64 dsq_id) __ksym; +u32 scx_bpf_reenqueue_local(void) __ksym; +void scx_bpf_kick_cpu(s32 cpu, u64 flags) __ksym; +s32 scx_bpf_dsq_nr_queued(u64 dsq_id) __ksym; +void scx_bpf_destroy_dsq(u64 dsq_id) __ksym; +int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, u64 flags) __ksym __weak; +struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) __ksym __weak; +void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) __ksym __weak; +void scx_bpf_exit_bstr(s64 exit_code, char *fmt, unsigned long long *data, u32 data__sz) __ksym __weak; +void scx_bpf_error_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym; +void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, u32 data_len) __ksym __weak; +u32 scx_bpf_cpuperf_cap(s32 cpu) __ksym __weak; +u32 scx_bpf_cpuperf_cur(s32 cpu) __ksym __weak; +void scx_bpf_cpuperf_set(s32 cpu, u32 perf) __ksym __weak; +u32 scx_bpf_nr_cpu_ids(void) __ksym __weak; +const struct cpumask *scx_bpf_get_possible_cpumask(void) __ksym __weak; +const struct cpumask *scx_bpf_get_online_cpumask(void) __ksym __weak; +void scx_bpf_put_cpumask(const struct cpumask *cpumask) __ksym __weak; +const struct cpumask *scx_bpf_get_idle_cpumask(void) __ksym; +const struct cpumask *scx_bpf_get_idle_smtmask(void) __ksym; +void scx_bpf_put_idle_cpumask(const struct cpumask *cpumask) __ksym; +bool scx_bpf_test_and_clear_cpu_idle(s32 cpu) __ksym; +s32 scx_bpf_pick_idle_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; +s32 scx_bpf_pick_any_cpu(const cpumask_t *cpus_allowed, u64 flags) __ksym; +bool scx_bpf_task_running(const struct task_struct *p) __ksym; +s32 scx_bpf_task_cpu(const struct task_struct *p) __ksym; +struct rq *scx_bpf_cpu_rq(s32 cpu) __ksym; + +static inline __attribute__((format(printf, 1, 2))) +void ___scx_bpf_bstr_format_checker(const char *fmt, ...) {} + +/* + * Helper macro for initializing the fmt and variadic argument inputs to both + * bstr exit kfuncs. Callers to this function should use ___fmt and ___param to + * refer to the initialized list of inputs to the bstr kfunc. + */ +#define scx_bpf_bstr_preamble(fmt, args...) \ + static char ___fmt[] = fmt; \ + /* \ + * Note that __param[] must have at least one \ + * element to keep the verifier happy. \ + */ \ + unsigned long long ___param[___bpf_narg(args) ?: 1] = {}; \ + \ + _Pragma("GCC diagnostic push") \ + _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \ + ___bpf_fill(___param, args); \ + _Pragma("GCC diagnostic pop") \ + +/* + * scx_bpf_exit() wraps the scx_bpf_exit_bstr() kfunc with variadic arguments + * instead of an array of u64. Using this macro will cause the scheduler to + * exit cleanly with the specified exit code being passed to user space. + */ +#define scx_bpf_exit(code, fmt, args...) \ +({ \ + scx_bpf_bstr_preamble(fmt, args) \ + scx_bpf_exit_bstr(code, ___fmt, ___param, sizeof(___param)); \ + ___scx_bpf_bstr_format_checker(fmt, ##args); \ +}) + +/* + * scx_bpf_error() wraps the scx_bpf_error_bstr() kfunc with variadic arguments + * instead of an array of u64. Invoking this macro will cause the scheduler to + * exit in an erroneous state, with diagnostic information being passed to the + * user. + */ +#define scx_bpf_error(fmt, args...) \ +({ \ + scx_bpf_bstr_preamble(fmt, args) \ + scx_bpf_error_bstr(___fmt, ___param, sizeof(___param)); \ + ___scx_bpf_bstr_format_checker(fmt, ##args); \ +}) + +/* + * scx_bpf_dump() wraps the scx_bpf_dump_bstr() kfunc with variadic arguments + * instead of an array of u64. To be used from ops.dump() and friends. + */ +#define scx_bpf_dump(fmt, args...) \ +({ \ + scx_bpf_bstr_preamble(fmt, args) \ + scx_bpf_dump_bstr(___fmt, ___param, sizeof(___param)); \ + ___scx_bpf_bstr_format_checker(fmt, ##args); \ +}) + +#define BPF_STRUCT_OPS(name, args...) \ +SEC("struct_ops/"#name) \ +BPF_PROG(name, ##args) + +#define BPF_STRUCT_OPS_SLEEPABLE(name, args...) \ +SEC("struct_ops.s/"#name) \ +BPF_PROG(name, ##args) + +/** + * RESIZABLE_ARRAY - Generates annotations for an array that may be resized + * @elfsec: the data section of the BPF program in which to place the array + * @arr: the name of the array + * + * libbpf has an API for setting map value sizes. Since data sections (i.e. + * bss, data, rodata) themselves are maps, a data section can be resized. If + * a data section has an array as its last element, the BTF info for that + * array will be adjusted so that length of the array is extended to meet the + * new length of the data section. This macro annotates an array to have an + * element count of one with the assumption that this array can be resized + * within the userspace program. It also annotates the section specifier so + * this array exists in a custom sub data section which can be resized + * independently. + * + * See RESIZE_ARRAY() for the userspace convenience macro for resizing an + * array declared with RESIZABLE_ARRAY(). + */ +#define RESIZABLE_ARRAY(elfsec, arr) arr[1] SEC("."#elfsec"."#arr) + +/** + * MEMBER_VPTR - Obtain the verified pointer to a struct or array member + * @base: struct or array to index + * @member: dereferenced member (e.g. .field, [idx0][idx1], .field[idx0] ...) + * + * The verifier often gets confused by the instruction sequence the compiler + * generates for indexing struct fields or arrays. This macro forces the + * compiler to generate a code sequence which first calculates the byte offset, + * checks it against the struct or array size and add that byte offset to + * generate the pointer to the member to help the verifier. + * + * Ideally, we want to abort if the calculated offset is out-of-bounds. However, + * BPF currently doesn't support abort, so evaluate to %NULL instead. The caller + * must check for %NULL and take appropriate action to appease the verifier. To + * avoid confusing the verifier, it's best to check for %NULL and dereference + * immediately. + * + * vptr = MEMBER_VPTR(my_array, [i][j]); + * if (!vptr) + * return error; + * *vptr = new_value; + * + * sizeof(@base) should encompass the memory area to be accessed and thus can't + * be a pointer to the area. Use `MEMBER_VPTR(*ptr, .member)` instead of + * `MEMBER_VPTR(ptr, ->member)`. + */ +#define MEMBER_VPTR(base, member) (typeof((base) member) *) \ +({ \ + u64 __base = (u64)&(base); \ + u64 __addr = (u64)&((base) member) - __base; \ + _Static_assert(sizeof(base) >= sizeof((base) member), \ + "@base is smaller than @member, is @base a pointer?"); \ + asm volatile ( \ + "if %0 <= %[max] goto +2\n" \ + "%0 = 0\n" \ + "goto +1\n" \ + "%0 += %1\n" \ + : "+r"(__addr) \ + : "r"(__base), \ + [max]"i"(sizeof(base) - sizeof((base) member))); \ + __addr; \ +}) + +/** + * ARRAY_ELEM_PTR - Obtain the verified pointer to an array element + * @arr: array to index into + * @i: array index + * @n: number of elements in array + * + * Similar to MEMBER_VPTR() but is intended for use with arrays where the + * element count needs to be explicit. + * It can be used in cases where a global array is defined with an initial + * size but is intended to be be resized before loading the BPF program. + * Without this version of the macro, MEMBER_VPTR() will use the compile time + * size of the array to compute the max, which will result in rejection by + * the verifier. + */ +#define ARRAY_ELEM_PTR(arr, i, n) (typeof(arr[i]) *) \ +({ \ + u64 __base = (u64)arr; \ + u64 __addr = (u64)&(arr[i]) - __base; \ + asm volatile ( \ + "if %0 <= %[max] goto +2\n" \ + "%0 = 0\n" \ + "goto +1\n" \ + "%0 += %1\n" \ + : "+r"(__addr) \ + : "r"(__base), \ + [max]"r"(sizeof(arr[0]) * ((n) - 1))); \ + __addr; \ +}) + + +/* + * BPF declarations and helpers + */ + +/* list and rbtree */ +#define __contains(name, node) __attribute__((btf_decl_tag("contains:" #name ":" #node))) +#define private(name) SEC(".data." #name) __hidden __attribute__((aligned(8))) + +void *bpf_obj_new_impl(__u64 local_type_id, void *meta) __ksym; +void bpf_obj_drop_impl(void *kptr, void *meta) __ksym; + +#define bpf_obj_new(type) ((type *)bpf_obj_new_impl(bpf_core_type_id_local(type), NULL)) +#define bpf_obj_drop(kptr) bpf_obj_drop_impl(kptr, NULL) + +void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node) __ksym; +void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node) __ksym; +struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) __ksym; +struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) __ksym; +struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, + struct bpf_rb_node *node) __ksym; +int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, + bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), + void *meta, __u64 off) __ksym; +#define bpf_rbtree_add(head, node, less) bpf_rbtree_add_impl(head, node, less, NULL, 0) + +struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) __ksym; + +void *bpf_refcount_acquire_impl(void *kptr, void *meta) __ksym; +#define bpf_refcount_acquire(kptr) bpf_refcount_acquire_impl(kptr, NULL) + +/* task */ +struct task_struct *bpf_task_from_pid(s32 pid) __ksym; +struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym; +void bpf_task_release(struct task_struct *p) __ksym; + +/* cgroup */ +struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) __ksym; +void bpf_cgroup_release(struct cgroup *cgrp) __ksym; +struct cgroup *bpf_cgroup_from_id(u64 cgid) __ksym; + +/* css iteration */ +struct bpf_iter_css; +struct cgroup_subsys_state; +extern int bpf_iter_css_new(struct bpf_iter_css *it, + struct cgroup_subsys_state *start, + unsigned int flags) __weak __ksym; +extern struct cgroup_subsys_state * +bpf_iter_css_next(struct bpf_iter_css *it) __weak __ksym; +extern void bpf_iter_css_destroy(struct bpf_iter_css *it) __weak __ksym; + +/* cpumask */ +struct bpf_cpumask *bpf_cpumask_create(void) __ksym; +struct bpf_cpumask *bpf_cpumask_acquire(struct bpf_cpumask *cpumask) __ksym; +void bpf_cpumask_release(struct bpf_cpumask *cpumask) __ksym; +u32 bpf_cpumask_first(const struct cpumask *cpumask) __ksym; +u32 bpf_cpumask_first_zero(const struct cpumask *cpumask) __ksym; +void bpf_cpumask_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; +void bpf_cpumask_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; +bool bpf_cpumask_test_cpu(u32 cpu, const struct cpumask *cpumask) __ksym; +bool bpf_cpumask_test_and_set_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; +bool bpf_cpumask_test_and_clear_cpu(u32 cpu, struct bpf_cpumask *cpumask) __ksym; +void bpf_cpumask_setall(struct bpf_cpumask *cpumask) __ksym; +void bpf_cpumask_clear(struct bpf_cpumask *cpumask) __ksym; +bool bpf_cpumask_and(struct bpf_cpumask *dst, const struct cpumask *src1, + const struct cpumask *src2) __ksym; +void bpf_cpumask_or(struct bpf_cpumask *dst, const struct cpumask *src1, + const struct cpumask *src2) __ksym; +void bpf_cpumask_xor(struct bpf_cpumask *dst, const struct cpumask *src1, + const struct cpumask *src2) __ksym; +bool bpf_cpumask_equal(const struct cpumask *src1, const struct cpumask *src2) __ksym; +bool bpf_cpumask_intersects(const struct cpumask *src1, const struct cpumask *src2) __ksym; +bool bpf_cpumask_subset(const struct cpumask *src1, const struct cpumask *src2) __ksym; +bool bpf_cpumask_empty(const struct cpumask *cpumask) __ksym; +bool bpf_cpumask_full(const struct cpumask *cpumask) __ksym; +void bpf_cpumask_copy(struct bpf_cpumask *dst, const struct cpumask *src) __ksym; +u32 bpf_cpumask_any_distribute(const struct cpumask *cpumask) __ksym; +u32 bpf_cpumask_any_and_distribute(const struct cpumask *src1, + const struct cpumask *src2) __ksym; + +/* rcu */ +void bpf_rcu_read_lock(void) __ksym; +void bpf_rcu_read_unlock(void) __ksym; + + +/* + * Other helpers + */ + +/* useful compiler attributes */ +#define likely(x) __builtin_expect(!!(x), 1) +#define unlikely(x) __builtin_expect(!!(x), 0) +#define __maybe_unused __attribute__((__unused__)) + +/* + * READ/WRITE_ONCE() are from kernel (include/asm-generic/rwonce.h). They + * prevent compiler from caching, redoing or reordering reads or writes. + */ +typedef __u8 __attribute__((__may_alias__)) __u8_alias_t; +typedef __u16 __attribute__((__may_alias__)) __u16_alias_t; +typedef __u32 __attribute__((__may_alias__)) __u32_alias_t; +typedef __u64 __attribute__((__may_alias__)) __u64_alias_t; + +static __always_inline void __read_once_size(const volatile void *p, void *res, int size) +{ + switch (size) { + case 1: *(__u8_alias_t *) res = *(volatile __u8_alias_t *) p; break; + case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break; + case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break; + case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break; + default: + barrier(); + __builtin_memcpy((void *)res, (const void *)p, size); + barrier(); + } +} + +static __always_inline void __write_once_size(volatile void *p, void *res, int size) +{ + switch (size) { + case 1: *(volatile __u8_alias_t *) p = *(__u8_alias_t *) res; break; + case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break; + case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break; + case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break; + default: + barrier(); + __builtin_memcpy((void *)p, (const void *)res, size); + barrier(); + } +} + +#define READ_ONCE(x) \ +({ \ + union { typeof(x) __val; char __c[1]; } __u = \ + { .__c = { 0 } }; \ + __read_once_size(&(x), __u.__c, sizeof(x)); \ + __u.__val; \ +}) + +#define WRITE_ONCE(x, val) \ +({ \ + union { typeof(x) __val; char __c[1]; } __u = \ + { .__val = (val) }; \ + __write_once_size(&(x), __u.__c, sizeof(x)); \ + __u.__val; \ +}) + +/* + * log2_u32 - Compute the base 2 logarithm of a 32-bit exponential value. + * @v: The value for which we're computing the base 2 logarithm. + */ +static inline u32 log2_u32(u32 v) +{ + u32 r; + u32 shift; + + r = (v > 0xFFFF) << 4; v >>= r; + shift = (v > 0xFF) << 3; v >>= shift; r |= shift; + shift = (v > 0xF) << 2; v >>= shift; r |= shift; + shift = (v > 0x3) << 1; v >>= shift; r |= shift; + r |= (v >> 1); + return r; +} + +/* + * log2_u64 - Compute the base 2 logarithm of a 64-bit exponential value. + * @v: The value for which we're computing the base 2 logarithm. + */ +static inline u32 log2_u64(u64 v) +{ + u32 hi = v >> 32; + if (hi) + return log2_u32(hi) + 32 + 1; + else + return log2_u32(v) + 1; +} + +#include "compat.bpf.h" + +#endif /* __SCX_COMMON_BPF_H */ diff --git a/tools/sched_ext/include/scx/common.h b/tools/sched_ext/include/scx/common.h new file mode 100644 index 000000000000..5b0f90152152 --- /dev/null +++ b/tools/sched_ext/include/scx/common.h @@ -0,0 +1,75 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 Tejun Heo + * Copyright (c) 2023 David Vernet + */ +#ifndef __SCHED_EXT_COMMON_H +#define __SCHED_EXT_COMMON_H + +#ifdef __KERNEL__ +#error "Should not be included by BPF programs" +#endif + +#include +#include +#include +#include +#include + +typedef uint8_t u8; +typedef uint16_t u16; +typedef uint32_t u32; +typedef uint64_t u64; +typedef int8_t s8; +typedef int16_t s16; +typedef int32_t s32; +typedef int64_t s64; + +#define SCX_BUG(__fmt, ...) \ + do { \ + fprintf(stderr, "[SCX_BUG] %s:%d", __FILE__, __LINE__); \ + if (errno) \ + fprintf(stderr, " (%s)\n", strerror(errno)); \ + else \ + fprintf(stderr, "\n"); \ + fprintf(stderr, __fmt __VA_OPT__(,) __VA_ARGS__); \ + fprintf(stderr, "\n"); \ + \ + exit(EXIT_FAILURE); \ + } while (0) + +#define SCX_BUG_ON(__cond, __fmt, ...) \ + do { \ + if (__cond) \ + SCX_BUG((__fmt) __VA_OPT__(,) __VA_ARGS__); \ + } while (0) + +/** + * RESIZE_ARRAY - Convenience macro for resizing a BPF array + * @__skel: the skeleton containing the array + * @elfsec: the data section of the BPF program in which the array exists + * @arr: the name of the array + * @n: the desired array element count + * + * For BPF arrays declared with RESIZABLE_ARRAY(), this macro performs two + * operations. It resizes the map which corresponds to the custom data + * section that contains the target array. As a side effect, the BTF info for + * the array is adjusted so that the array length is sized to cover the new + * data section size. The second operation is reassigning the skeleton pointer + * for that custom data section so that it points to the newly memory mapped + * region. + */ +#define RESIZE_ARRAY(__skel, elfsec, arr, n) \ + do { \ + size_t __sz; \ + bpf_map__set_value_size((__skel)->maps.elfsec##_##arr, \ + sizeof((__skel)->elfsec##_##arr->arr[0]) * (n)); \ + (__skel)->elfsec##_##arr = \ + bpf_map__initial_value((__skel)->maps.elfsec##_##arr, &__sz); \ + } while (0) + +#include "user_exit_info.h" +#include "compat.h" + +#endif /* __SCHED_EXT_COMMON_H */ diff --git a/tools/sched_ext/include/scx/compat.bpf.h b/tools/sched_ext/include/scx/compat.bpf.h new file mode 100644 index 000000000000..3d2fe1208900 --- /dev/null +++ b/tools/sched_ext/include/scx/compat.bpf.h @@ -0,0 +1,28 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 Tejun Heo + * Copyright (c) 2024 David Vernet + */ +#ifndef __SCX_COMPAT_BPF_H +#define __SCX_COMPAT_BPF_H + +#define __COMPAT_ENUM_OR_ZERO(__type, __ent) \ +({ \ + __type __ret = 0; \ + if (bpf_core_enum_value_exists(__type, __ent)) \ + __ret = __ent; \ + __ret; \ +}) + +/* + * Define sched_ext_ops. This may be expanded to define multiple variants for + * backward compatibility. See compat.h::SCX_OPS_LOAD/ATTACH(). + */ +#define SCX_OPS_DEFINE(__name, ...) \ + SEC(".struct_ops.link") \ + struct sched_ext_ops __name = { \ + __VA_ARGS__, \ + }; + +#endif /* __SCX_COMPAT_BPF_H */ diff --git a/tools/sched_ext/include/scx/compat.h b/tools/sched_ext/include/scx/compat.h new file mode 100644 index 000000000000..1bf8eddf20c2 --- /dev/null +++ b/tools/sched_ext/include/scx/compat.h @@ -0,0 +1,187 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 Tejun Heo + * Copyright (c) 2024 David Vernet + */ +#ifndef __SCX_COMPAT_H +#define __SCX_COMPAT_H + +#include +#include +#include +#include + +struct btf *__COMPAT_vmlinux_btf __attribute__((weak)); + +static inline void __COMPAT_load_vmlinux_btf(void) +{ + if (!__COMPAT_vmlinux_btf) { + __COMPAT_vmlinux_btf = btf__load_vmlinux_btf(); + SCX_BUG_ON(!__COMPAT_vmlinux_btf, "btf__load_vmlinux_btf()"); + } +} + +static inline bool __COMPAT_read_enum(const char *type, const char *name, u64 *v) +{ + const struct btf_type *t; + const char *n; + s32 tid; + int i; + + __COMPAT_load_vmlinux_btf(); + + tid = btf__find_by_name(__COMPAT_vmlinux_btf, type); + if (tid < 0) + return false; + + t = btf__type_by_id(__COMPAT_vmlinux_btf, tid); + SCX_BUG_ON(!t, "btf__type_by_id(%d)", tid); + + if (btf_is_enum(t)) { + struct btf_enum *e = btf_enum(t); + + for (i = 0; i < BTF_INFO_VLEN(t->info); i++) { + n = btf__name_by_offset(__COMPAT_vmlinux_btf, e[i].name_off); + SCX_BUG_ON(!n, "btf__name_by_offset()"); + if (!strcmp(n, name)) { + *v = e[i].val; + return true; + } + } + } else if (btf_is_enum64(t)) { + struct btf_enum64 *e = btf_enum64(t); + + for (i = 0; i < BTF_INFO_VLEN(t->info); i++) { + n = btf__name_by_offset(__COMPAT_vmlinux_btf, e[i].name_off); + SCX_BUG_ON(!n, "btf__name_by_offset()"); + if (!strcmp(n, name)) { + *v = btf_enum64_value(&e[i]); + return true; + } + } + } + + return false; +} + +#define __COMPAT_ENUM_OR_ZERO(__type, __ent) \ +({ \ + u64 __val = 0; \ + __COMPAT_read_enum(__type, __ent, &__val); \ + __val; \ +}) + +static inline bool __COMPAT_has_ksym(const char *ksym) +{ + __COMPAT_load_vmlinux_btf(); + return btf__find_by_name(__COMPAT_vmlinux_btf, ksym) >= 0; +} + +static inline bool __COMPAT_struct_has_field(const char *type, const char *field) +{ + const struct btf_type *t; + const struct btf_member *m; + const char *n; + s32 tid; + int i; + + __COMPAT_load_vmlinux_btf(); + tid = btf__find_by_name_kind(__COMPAT_vmlinux_btf, type, BTF_KIND_STRUCT); + if (tid < 0) + return false; + + t = btf__type_by_id(__COMPAT_vmlinux_btf, tid); + SCX_BUG_ON(!t, "btf__type_by_id(%d)", tid); + + m = btf_members(t); + + for (i = 0; i < BTF_INFO_VLEN(t->info); i++) { + n = btf__name_by_offset(__COMPAT_vmlinux_btf, m[i].name_off); + SCX_BUG_ON(!n, "btf__name_by_offset()"); + if (!strcmp(n, field)) + return true; + } + + return false; +} + +#define SCX_OPS_SWITCH_PARTIAL \ + __COMPAT_ENUM_OR_ZERO("scx_ops_flags", "SCX_OPS_SWITCH_PARTIAL") + +static inline long scx_hotplug_seq(void) +{ + int fd; + char buf[32]; + ssize_t len; + long val; + + fd = open("/sys/kernel/sched_ext/hotplug_seq", O_RDONLY); + if (fd < 0) + return -ENOENT; + + len = read(fd, buf, sizeof(buf) - 1); + SCX_BUG_ON(len <= 0, "read failed (%ld)", len); + buf[len] = 0; + close(fd); + + val = strtoul(buf, NULL, 10); + SCX_BUG_ON(val < 0, "invalid num hotplug events: %lu", val); + + return val; +} + +/* + * struct sched_ext_ops can change over time. If compat.bpf.h::SCX_OPS_DEFINE() + * is used to define ops and compat.h::SCX_OPS_LOAD/ATTACH() are used to load + * and attach it, backward compatibility is automatically maintained where + * reasonable. + * + * ec7e3b0463e1 ("implement-ops") in https://github.com/sched-ext/sched_ext is + * the current minimum required kernel version. + */ +#define SCX_OPS_OPEN(__ops_name, __scx_name) ({ \ + struct __scx_name *__skel; \ + \ + SCX_BUG_ON(!__COMPAT_struct_has_field("sched_ext_ops", "dump"), \ + "sched_ext_ops.dump() missing, kernel too old?"); \ + \ + __skel = __scx_name##__open(); \ + SCX_BUG_ON(!__skel, "Could not open " #__scx_name); \ + __skel->struct_ops.__ops_name->hotplug_seq = scx_hotplug_seq(); \ + __skel; \ +}) + +#define SCX_OPS_LOAD(__skel, __ops_name, __scx_name, __uei_name) ({ \ + UEI_SET_SIZE(__skel, __ops_name, __uei_name); \ + SCX_BUG_ON(__scx_name##__load((__skel)), "Failed to load skel"); \ +}) + +/* + * New versions of bpftool now emit additional link placeholders for BPF maps, + * and set up BPF skeleton in such a way that libbpf will auto-attach BPF maps + * automatically, assumming libbpf is recent enough (v1.5+). Old libbpf will do + * nothing with those links and won't attempt to auto-attach maps. + * + * To maintain compatibility with older libbpf while avoiding trying to attach + * twice, disable the autoattach feature on newer libbpf. + */ +/* BACKPORT - bpf_mpa__set_autoattach() not available yet, commented out */ +/*#if LIBBPF_MAJOR_VERSION > 1 || \ + (LIBBPF_MAJOR_VERSION == 1 && LIBBPF_MINOR_VERSION >= 5) +#define __SCX_OPS_DISABLE_AUTOATTACH(__skel, __ops_name) \ + bpf_map__set_autoattach((__skel)->maps.__ops_name, false) +#else*/ +#define __SCX_OPS_DISABLE_AUTOATTACH(__skel, __ops_name) do {} while (0) +/*#endif*/ + +#define SCX_OPS_ATTACH(__skel, __ops_name, __scx_name) ({ \ + struct bpf_link *__link; \ + __SCX_OPS_DISABLE_AUTOATTACH(__skel, __ops_name); \ + SCX_BUG_ON(__scx_name##__attach((__skel)), "Failed to attach skel"); \ + __link = bpf_map__attach_struct_ops((__skel)->maps.__ops_name); \ + SCX_BUG_ON(!__link, "Failed to attach struct_ops"); \ + __link; \ +}) + +#endif /* __SCX_COMPAT_H */ diff --git a/tools/sched_ext/include/scx/user_exit_info.h b/tools/sched_ext/include/scx/user_exit_info.h new file mode 100644 index 000000000000..891693ee604e --- /dev/null +++ b/tools/sched_ext/include/scx/user_exit_info.h @@ -0,0 +1,111 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Define struct user_exit_info which is shared between BPF and userspace parts + * to communicate exit status and other information. + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#ifndef __USER_EXIT_INFO_H +#define __USER_EXIT_INFO_H + +enum uei_sizes { + UEI_REASON_LEN = 128, + UEI_MSG_LEN = 1024, + UEI_DUMP_DFL_LEN = 32768, +}; + +struct user_exit_info { + int kind; + s64 exit_code; + char reason[UEI_REASON_LEN]; + char msg[UEI_MSG_LEN]; +}; + +#ifdef __bpf__ + +#include "vmlinux.h" +#include + +#define UEI_DEFINE(__name) \ + char RESIZABLE_ARRAY(data, __name##_dump); \ + const volatile u32 __name##_dump_len; \ + struct user_exit_info __name SEC(".data") + +#define UEI_RECORD(__uei_name, __ei) ({ \ + bpf_probe_read_kernel_str(__uei_name.reason, \ + sizeof(__uei_name.reason), (__ei)->reason); \ + bpf_probe_read_kernel_str(__uei_name.msg, \ + sizeof(__uei_name.msg), (__ei)->msg); \ + bpf_probe_read_kernel_str(__uei_name##_dump, \ + __uei_name##_dump_len, (__ei)->dump); \ + if (bpf_core_field_exists((__ei)->exit_code)) \ + __uei_name.exit_code = (__ei)->exit_code; \ + /* use __sync to force memory barrier */ \ + __sync_val_compare_and_swap(&__uei_name.kind, __uei_name.kind, \ + (__ei)->kind); \ +}) + +#else /* !__bpf__ */ + +#include +#include + +/* no need to call the following explicitly if SCX_OPS_LOAD() is used */ +#define UEI_SET_SIZE(__skel, __ops_name, __uei_name) ({ \ + u32 __len = (__skel)->struct_ops.__ops_name->exit_dump_len ?: UEI_DUMP_DFL_LEN; \ + (__skel)->rodata->__uei_name##_dump_len = __len; \ + RESIZE_ARRAY((__skel), data, __uei_name##_dump, __len); \ +}) + +#define UEI_EXITED(__skel, __uei_name) ({ \ + /* use __sync to force memory barrier */ \ + __sync_val_compare_and_swap(&(__skel)->data->__uei_name.kind, -1, -1); \ +}) + +#define UEI_REPORT(__skel, __uei_name) ({ \ + struct user_exit_info *__uei = &(__skel)->data->__uei_name; \ + char *__uei_dump = (__skel)->data_##__uei_name##_dump->__uei_name##_dump; \ + if (__uei_dump[0] != '\0') { \ + fputs("\nDEBUG DUMP\n", stderr); \ + fputs("================================================================================\n\n", stderr); \ + fputs(__uei_dump, stderr); \ + fputs("\n================================================================================\n\n", stderr); \ + } \ + fprintf(stderr, "EXIT: %s", __uei->reason); \ + if (__uei->msg[0] != '\0') \ + fprintf(stderr, " (%s)", __uei->msg); \ + fputs("\n", stderr); \ + __uei->exit_code; \ +}) + +/* + * We can't import vmlinux.h while compiling user C code. Let's duplicate + * scx_exit_code definition. + */ +enum scx_exit_code { + /* Reasons */ + SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, + + /* Actions */ + SCX_ECODE_ACT_RESTART = 1LLU << 48, +}; + +enum uei_ecode_mask { + UEI_ECODE_USER_MASK = ((1LLU << 32) - 1), + UEI_ECODE_SYS_RSN_MASK = ((1LLU << 16) - 1) << 32, + UEI_ECODE_SYS_ACT_MASK = ((1LLU << 16) - 1) << 48, +}; + +/* + * These macro interpret the ecode returned from UEI_REPORT(). + */ +#define UEI_ECODE_USER(__ecode) ((__ecode) & UEI_ECODE_USER_MASK) +#define UEI_ECODE_SYS_RSN(__ecode) ((__ecode) & UEI_ECODE_SYS_RSN_MASK) +#define UEI_ECODE_SYS_ACT(__ecode) ((__ecode) & UEI_ECODE_SYS_ACT_MASK) + +#define UEI_ECODE_RESTART(__ecode) (UEI_ECODE_SYS_ACT((__ecode)) == SCX_ECODE_ACT_RESTART) + +#endif /* __bpf__ */ +#endif /* __USER_EXIT_INFO_H */ diff --git a/tools/sched_ext/scx_central.bpf.c b/tools/sched_ext/scx_central.bpf.c new file mode 100644 index 000000000000..1d8fd570eaa7 --- /dev/null +++ b/tools/sched_ext/scx_central.bpf.c @@ -0,0 +1,361 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A central FIFO sched_ext scheduler which demonstrates the followings: + * + * a. Making all scheduling decisions from one CPU: + * + * The central CPU is the only one making scheduling decisions. All other + * CPUs kick the central CPU when they run out of tasks to run. + * + * There is one global BPF queue and the central CPU schedules all CPUs by + * dispatching from the global queue to each CPU's local dsq from dispatch(). + * This isn't the most straightforward. e.g. It'd be easier to bounce + * through per-CPU BPF queues. The current design is chosen to maximally + * utilize and verify various SCX mechanisms such as LOCAL_ON dispatching. + * + * b. Tickless operation + * + * All tasks are dispatched with the infinite slice which allows stopping the + * ticks on CONFIG_NO_HZ_FULL kernels running with the proper nohz_full + * parameter. The tickless operation can be observed through + * /proc/interrupts. + * + * Periodic switching is enforced by a periodic timer checking all CPUs and + * preempting them as necessary. Unfortunately, BPF timer currently doesn't + * have a way to pin to a specific CPU, so the periodic timer isn't pinned to + * the central CPU. + * + * c. Preemption + * + * Kthreads are unconditionally queued to the head of a matching local dsq + * and dispatched with SCX_DSQ_PREEMPT. This ensures that a kthread is always + * prioritized over user threads, which is required for ensuring forward + * progress as e.g. the periodic timer may run on a ksoftirqd and if the + * ksoftirqd gets starved by a user thread, there may not be anything else to + * vacate that user thread. + * + * SCX_KICK_PREEMPT is used to trigger scheduling and CPUs to move to the + * next tasks. + * + * This scheduler is designed to maximize usage of various SCX mechanisms. A + * more practical implementation would likely put the scheduling loop outside + * the central CPU's dispatch() path and add some form of priority mechanism. + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#include + +char _license[] SEC("license") = "GPL"; + +enum { + FALLBACK_DSQ_ID = 0, + MS_TO_NS = 1000LLU * 1000, + TIMER_INTERVAL_NS = 1 * MS_TO_NS, +}; + +const volatile s32 central_cpu; +const volatile u32 nr_cpu_ids = 1; /* !0 for veristat, set during init */ +const volatile u64 slice_ns = SCX_SLICE_DFL; + +bool timer_pinned = true; +u64 nr_total, nr_locals, nr_queued, nr_lost_pids; +u64 nr_timers, nr_dispatches, nr_mismatches, nr_retries; +u64 nr_overflows; + +UEI_DEFINE(uei); + +struct { + __uint(type, BPF_MAP_TYPE_QUEUE); + __uint(max_entries, 4096); + __type(value, s32); +} central_q SEC(".maps"); + +/* can't use percpu map due to bad lookups */ +bool RESIZABLE_ARRAY(data, cpu_gimme_task); +u64 RESIZABLE_ARRAY(data, cpu_started_at); + +struct central_timer { + struct bpf_timer timer; +}; + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY); + __uint(max_entries, 1); + __type(key, u32); + __type(value, struct central_timer); +} central_timer SEC(".maps"); + +static bool vtime_before(u64 a, u64 b) +{ + return (s64)(a - b) < 0; +} + +s32 BPF_STRUCT_OPS(central_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + /* + * Steer wakeups to the central CPU as much as possible to avoid + * disturbing other CPUs. It's safe to blindly return the central cpu as + * select_cpu() is a hint and if @p can't be on it, the kernel will + * automatically pick a fallback CPU. + */ + return central_cpu; +} + +void BPF_STRUCT_OPS(central_enqueue, struct task_struct *p, u64 enq_flags) +{ + s32 pid = p->pid; + + __sync_fetch_and_add(&nr_total, 1); + + /* + * Push per-cpu kthreads at the head of local dsq's and preempt the + * corresponding CPU. This ensures that e.g. ksoftirqd isn't blocked + * behind other threads which is necessary for forward progress + * guarantee as we depend on the BPF timer which may run from ksoftirqd. + */ + if ((p->flags & PF_KTHREAD) && p->nr_cpus_allowed == 1) { + __sync_fetch_and_add(&nr_locals, 1); + scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_INF, + enq_flags | SCX_ENQ_PREEMPT); + return; + } + + if (bpf_map_push_elem(¢ral_q, &pid, 0)) { + __sync_fetch_and_add(&nr_overflows, 1); + scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, enq_flags); + return; + } + + __sync_fetch_and_add(&nr_queued, 1); + + if (!scx_bpf_task_running(p)) + scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); +} + +static bool dispatch_to_cpu(s32 cpu) +{ + struct task_struct *p; + s32 pid; + + bpf_repeat(BPF_MAX_LOOPS) { + if (bpf_map_pop_elem(¢ral_q, &pid)) + break; + + __sync_fetch_and_sub(&nr_queued, 1); + + p = bpf_task_from_pid(pid); + if (!p) { + __sync_fetch_and_add(&nr_lost_pids, 1); + continue; + } + + /* + * If we can't run the task at the top, do the dumb thing and + * bounce it to the fallback dsq. + */ + if (!bpf_cpumask_test_cpu(cpu, p->cpus_ptr)) { + __sync_fetch_and_add(&nr_mismatches, 1); + scx_bpf_dispatch(p, FALLBACK_DSQ_ID, SCX_SLICE_INF, 0); + bpf_task_release(p); + /* + * We might run out of dispatch buffer slots if we continue dispatching + * to the fallback DSQ, without dispatching to the local DSQ of the + * target CPU. In such a case, break the loop now as will fail the + * next dispatch operation. + */ + if (!scx_bpf_dispatch_nr_slots()) + break; + continue; + } + + /* dispatch to local and mark that @cpu doesn't need more */ + scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, SCX_SLICE_INF, 0); + + if (cpu != central_cpu) + scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE); + + bpf_task_release(p); + return true; + } + + return false; +} + +void BPF_STRUCT_OPS(central_dispatch, s32 cpu, struct task_struct *prev) +{ + if (cpu == central_cpu) { + /* dispatch for all other CPUs first */ + __sync_fetch_and_add(&nr_dispatches, 1); + + bpf_for(cpu, 0, nr_cpu_ids) { + bool *gimme; + + if (!scx_bpf_dispatch_nr_slots()) + break; + + /* central's gimme is never set */ + gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids); + if (gimme && !*gimme) + continue; + + if (dispatch_to_cpu(cpu)) + *gimme = false; + } + + /* + * Retry if we ran out of dispatch buffer slots as we might have + * skipped some CPUs and also need to dispatch for self. The ext + * core automatically retries if the local dsq is empty but we + * can't rely on that as we're dispatching for other CPUs too. + * Kick self explicitly to retry. + */ + if (!scx_bpf_dispatch_nr_slots()) { + __sync_fetch_and_add(&nr_retries, 1); + scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); + return; + } + + /* look for a task to run on the central CPU */ + if (scx_bpf_consume(FALLBACK_DSQ_ID)) + return; + dispatch_to_cpu(central_cpu); + } else { + bool *gimme; + + if (scx_bpf_consume(FALLBACK_DSQ_ID)) + return; + + gimme = ARRAY_ELEM_PTR(cpu_gimme_task, cpu, nr_cpu_ids); + if (gimme) + *gimme = true; + + /* + * Force dispatch on the scheduling CPU so that it finds a task + * to run for us. + */ + scx_bpf_kick_cpu(central_cpu, SCX_KICK_PREEMPT); + } +} + +void BPF_STRUCT_OPS(central_running, struct task_struct *p) +{ + s32 cpu = scx_bpf_task_cpu(p); + u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); + if (started_at) + *started_at = bpf_ktime_get_ns() ?: 1; /* 0 indicates idle */ +} + +void BPF_STRUCT_OPS(central_stopping, struct task_struct *p, bool runnable) +{ + s32 cpu = scx_bpf_task_cpu(p); + u64 *started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); + if (started_at) + *started_at = 0; +} + +static int central_timerfn(void *map, int *key, struct bpf_timer *timer) +{ + u64 now = bpf_ktime_get_ns(); + u64 nr_to_kick = nr_queued; + s32 i, curr_cpu; + + curr_cpu = bpf_get_smp_processor_id(); + if (timer_pinned && (curr_cpu != central_cpu)) { + scx_bpf_error("Central timer ran on CPU %d, not central CPU %d", + curr_cpu, central_cpu); + return 0; + } + + bpf_for(i, 0, nr_cpu_ids) { + s32 cpu = (nr_timers + i) % nr_cpu_ids; + u64 *started_at; + + if (cpu == central_cpu) + continue; + + /* kick iff the current one exhausted its slice */ + started_at = ARRAY_ELEM_PTR(cpu_started_at, cpu, nr_cpu_ids); + if (started_at && *started_at && + vtime_before(now, *started_at + slice_ns)) + continue; + + /* and there's something pending */ + if (scx_bpf_dsq_nr_queued(FALLBACK_DSQ_ID) || + scx_bpf_dsq_nr_queued(SCX_DSQ_LOCAL_ON | cpu)) + ; + else if (nr_to_kick) + nr_to_kick--; + else + continue; + + scx_bpf_kick_cpu(cpu, SCX_KICK_PREEMPT); + } + + bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN); + __sync_fetch_and_add(&nr_timers, 1); + return 0; +} + +int BPF_STRUCT_OPS_SLEEPABLE(central_init) +{ + u32 key = 0; + struct bpf_timer *timer; + int ret; + + ret = scx_bpf_create_dsq(FALLBACK_DSQ_ID, -1); + if (ret) + return ret; + + timer = bpf_map_lookup_elem(¢ral_timer, &key); + if (!timer) + return -ESRCH; + + if (bpf_get_smp_processor_id() != central_cpu) { + scx_bpf_error("init from non-central CPU"); + return -EINVAL; + } + + bpf_timer_init(timer, ¢ral_timer, CLOCK_MONOTONIC); + bpf_timer_set_callback(timer, central_timerfn); + + ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, BPF_F_TIMER_CPU_PIN); + /* + * BPF_F_TIMER_CPU_PIN is pretty new (>=6.7). If we're running in a + * kernel which doesn't have it, bpf_timer_start() will return -EINVAL. + * Retry without the PIN. This would be the perfect use case for + * bpf_core_enum_value_exists() but the enum type doesn't have a name + * and can't be used with bpf_core_enum_value_exists(). Oh well... + */ + if (ret == -EINVAL) { + timer_pinned = false; + ret = bpf_timer_start(timer, TIMER_INTERVAL_NS, 0); + } + if (ret) + scx_bpf_error("bpf_timer_start failed (%d)", ret); + return ret; +} + +void BPF_STRUCT_OPS(central_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SCX_OPS_DEFINE(central_ops, + /* + * We are offloading all scheduling decisions to the central CPU + * and thus being the last task on a given CPU doesn't mean + * anything special. Enqueue the last tasks like any other tasks. + */ + .flags = SCX_OPS_ENQ_LAST, + + .select_cpu = (void *)central_select_cpu, + .enqueue = (void *)central_enqueue, + .dispatch = (void *)central_dispatch, + .running = (void *)central_running, + .stopping = (void *)central_stopping, + .init = (void *)central_init, + .exit = (void *)central_exit, + .name = "central"); diff --git a/tools/sched_ext/scx_central.c b/tools/sched_ext/scx_central.c new file mode 100644 index 000000000000..21deea320bd7 --- /dev/null +++ b/tools/sched_ext/scx_central.c @@ -0,0 +1,135 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#define _GNU_SOURCE +#include +#include +#include +#include +#include +#include +#include +#include +#include "scx_central.bpf.skel.h" + +const char help_fmt[] = +"A central FIFO sched_ext scheduler.\n" +"\n" +"See the top-level comment in .bpf.c for more details.\n" +"\n" +"Usage: %s [-s SLICE_US] [-c CPU]\n" +"\n" +" -s SLICE_US Override slice duration\n" +" -c CPU Override the central CPU (default: 0)\n" +" -v Print libbpf debug messages\n" +" -h Display this help and exit\n"; + +static bool verbose; +static volatile int exit_req; + +static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) +{ + if (level == LIBBPF_DEBUG && !verbose) + return 0; + return vfprintf(stderr, format, args); +} + +static void sigint_handler(int dummy) +{ + exit_req = 1; +} + +int main(int argc, char **argv) +{ + struct scx_central *skel; + struct bpf_link *link; + __u64 seq = 0, ecode; + __s32 opt; + cpu_set_t *cpuset; + + libbpf_set_print(libbpf_print_fn); + signal(SIGINT, sigint_handler); + signal(SIGTERM, sigint_handler); +restart: + skel = SCX_OPS_OPEN(central_ops, scx_central); + + skel->rodata->central_cpu = 0; + skel->rodata->nr_cpu_ids = libbpf_num_possible_cpus(); + + while ((opt = getopt(argc, argv, "s:c:pvh")) != -1) { + switch (opt) { + case 's': + skel->rodata->slice_ns = strtoull(optarg, NULL, 0) * 1000; + break; + case 'c': + skel->rodata->central_cpu = strtoul(optarg, NULL, 0); + break; + case 'v': + verbose = true; + break; + default: + fprintf(stderr, help_fmt, basename(argv[0])); + return opt != 'h'; + } + } + + /* Resize arrays so their element count is equal to cpu count. */ + RESIZE_ARRAY(skel, data, cpu_gimme_task, skel->rodata->nr_cpu_ids); + RESIZE_ARRAY(skel, data, cpu_started_at, skel->rodata->nr_cpu_ids); + + SCX_OPS_LOAD(skel, central_ops, scx_central, uei); + + /* + * Affinitize the loading thread to the central CPU, as: + * - That's where the BPF timer is first invoked in the BPF program. + * - We probably don't want this user space component to take up a core + * from a task that would benefit from avoiding preemption on one of + * the tickless cores. + * + * Until BPF supports pinning the timer, it's not guaranteed that it + * will always be invoked on the central CPU. In practice, this + * suffices the majority of the time. + */ + cpuset = CPU_ALLOC(skel->rodata->nr_cpu_ids); + SCX_BUG_ON(!cpuset, "Failed to allocate cpuset"); + CPU_ZERO(cpuset); + CPU_SET(skel->rodata->central_cpu, cpuset); + SCX_BUG_ON(sched_setaffinity(0, sizeof(cpuset), cpuset), + "Failed to affinitize to central CPU %d (max %d)", + skel->rodata->central_cpu, skel->rodata->nr_cpu_ids - 1); + CPU_FREE(cpuset); + + link = SCX_OPS_ATTACH(skel, central_ops, scx_central); + + if (!skel->data->timer_pinned) + printf("WARNING : BPF_F_TIMER_CPU_PIN not available, timer not pinned to central\n"); + + while (!exit_req && !UEI_EXITED(skel, uei)) { + printf("[SEQ %llu]\n", seq++); + printf("total :%10" PRIu64 " local:%10" PRIu64 " queued:%10" PRIu64 " lost:%10" PRIu64 "\n", + skel->bss->nr_total, + skel->bss->nr_locals, + skel->bss->nr_queued, + skel->bss->nr_lost_pids); + printf("timer :%10" PRIu64 " dispatch:%10" PRIu64 " mismatch:%10" PRIu64 " retry:%10" PRIu64 "\n", + skel->bss->nr_timers, + skel->bss->nr_dispatches, + skel->bss->nr_mismatches, + skel->bss->nr_retries); + printf("overflow:%10" PRIu64 "\n", + skel->bss->nr_overflows); + fflush(stdout); + sleep(1); + } + + bpf_link__destroy(link); + ecode = UEI_REPORT(skel, uei); + scx_central__destroy(skel); + + if (UEI_ECODE_RESTART(ecode)) + goto restart; + return 0; +} diff --git a/tools/sched_ext/scx_qmap.bpf.c b/tools/sched_ext/scx_qmap.bpf.c new file mode 100644 index 000000000000..892278f12dce --- /dev/null +++ b/tools/sched_ext/scx_qmap.bpf.c @@ -0,0 +1,706 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A simple five-level FIFO queue scheduler. + * + * There are five FIFOs implemented using BPF_MAP_TYPE_QUEUE. A task gets + * assigned to one depending on its compound weight. Each CPU round robins + * through the FIFOs and dispatches more from FIFOs with higher indices - 1 from + * queue0, 2 from queue1, 4 from queue2 and so on. + * + * This scheduler demonstrates: + * + * - BPF-side queueing using PIDs. + * - Sleepable per-task storage allocation using ops.prep_enable(). + * - Using ops.cpu_release() to handle a higher priority scheduling class taking + * the CPU away. + * - Core-sched support. + * + * This scheduler is primarily for demonstration and testing of sched_ext + * features and unlikely to be useful for actual workloads. + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#include + +enum consts { + ONE_SEC_IN_NS = 1000000000, + SHARED_DSQ = 0, +}; + +char _license[] SEC("license") = "GPL"; + +const volatile u64 slice_ns = SCX_SLICE_DFL; +const volatile u32 stall_user_nth; +const volatile u32 stall_kernel_nth; +const volatile u32 dsp_inf_loop_after; +const volatile u32 dsp_batch; +const volatile bool print_shared_dsq; +const volatile s32 disallow_tgid; +const volatile bool suppress_dump; + +u32 test_error_cnt; + +UEI_DEFINE(uei); + +struct qmap { + __uint(type, BPF_MAP_TYPE_QUEUE); + __uint(max_entries, 4096); + __type(value, u32); +} queue0 SEC(".maps"), + queue1 SEC(".maps"), + queue2 SEC(".maps"), + queue3 SEC(".maps"), + queue4 SEC(".maps"); + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS); + __uint(max_entries, 5); + __type(key, int); + __array(values, struct qmap); +} queue_arr SEC(".maps") = { + .values = { + [0] = &queue0, + [1] = &queue1, + [2] = &queue2, + [3] = &queue3, + [4] = &queue4, + }, +}; + +/* + * If enabled, CPU performance target is set according to the queue index + * according to the following table. + */ +static const u32 qidx_to_cpuperf_target[] = { + [0] = SCX_CPUPERF_ONE * 0 / 4, + [1] = SCX_CPUPERF_ONE * 1 / 4, + [2] = SCX_CPUPERF_ONE * 2 / 4, + [3] = SCX_CPUPERF_ONE * 3 / 4, + [4] = SCX_CPUPERF_ONE * 4 / 4, +}; + +/* + * Per-queue sequence numbers to implement core-sched ordering. + * + * Tail seq is assigned to each queued task and incremented. Head seq tracks the + * sequence number of the latest dispatched task. The distance between the a + * task's seq and the associated queue's head seq is called the queue distance + * and used when comparing two tasks for ordering. See qmap_core_sched_before(). + */ +static u64 core_sched_head_seqs[5]; +static u64 core_sched_tail_seqs[5]; + +/* Per-task scheduling context */ +struct task_ctx { + bool force_local; /* Dispatch directly to local_dsq */ + u64 core_sched_seq; +}; + +struct { + __uint(type, BPF_MAP_TYPE_TASK_STORAGE); + __uint(map_flags, BPF_F_NO_PREALLOC); + __type(key, int); + __type(value, struct task_ctx); +} task_ctx_stor SEC(".maps"); + +struct cpu_ctx { + u64 dsp_idx; /* dispatch index */ + u64 dsp_cnt; /* remaining count */ + u32 avg_weight; + u32 cpuperf_target; +}; + +struct { + __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); + __uint(max_entries, 1); + __type(key, u32); + __type(value, struct cpu_ctx); +} cpu_ctx_stor SEC(".maps"); + +/* Statistics */ +u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued, nr_ddsp_from_enq; +u64 nr_core_sched_execed; +u32 cpuperf_min, cpuperf_avg, cpuperf_max; +u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max; + +static s32 pick_direct_dispatch_cpu(struct task_struct *p, s32 prev_cpu) +{ + s32 cpu; + + if (p->nr_cpus_allowed == 1 || + scx_bpf_test_and_clear_cpu_idle(prev_cpu)) + return prev_cpu; + + cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + return cpu; + + return -1; +} + +s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + struct task_ctx *tctx; + s32 cpu; + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return -ESRCH; + } + + cpu = pick_direct_dispatch_cpu(p, prev_cpu); + + if (cpu >= 0) { + tctx->force_local = true; + return cpu; + } else { + return prev_cpu; + } +} + +static int weight_to_idx(u32 weight) +{ + /* Coarsely map the compound weight to a FIFO. */ + if (weight <= 25) + return 0; + else if (weight <= 50) + return 1; + else if (weight < 200) + return 2; + else if (weight < 400) + return 3; + else + return 4; +} + +void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags) +{ + static u32 user_cnt, kernel_cnt; + struct task_ctx *tctx; + u32 pid = p->pid; + int idx = weight_to_idx(p->scx.weight); + void *ring; + s32 cpu; + + if (p->flags & PF_KTHREAD) { + if (stall_kernel_nth && !(++kernel_cnt % stall_kernel_nth)) + return; + } else { + if (stall_user_nth && !(++user_cnt % stall_user_nth)) + return; + } + + if (test_error_cnt && !--test_error_cnt) + scx_bpf_error("test triggering error"); + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return; + } + + /* + * All enqueued tasks must have their core_sched_seq updated for correct + * core-sched ordering, which is why %SCX_OPS_ENQ_LAST is specified in + * qmap_ops.flags. + */ + tctx->core_sched_seq = core_sched_tail_seqs[idx]++; + + /* + * If qmap_select_cpu() is telling us to or this is the last runnable + * task on the CPU, enqueue locally. + */ + if (tctx->force_local || (enq_flags & SCX_ENQ_LAST)) { + tctx->force_local = false; + scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, enq_flags); + return; + } + + /* if !WAKEUP, select_cpu() wasn't called, try direct dispatch */ + if (!(enq_flags & SCX_ENQ_WAKEUP) && + (cpu = pick_direct_dispatch_cpu(p, scx_bpf_task_cpu(p))) >= 0) { + __sync_fetch_and_add(&nr_ddsp_from_enq, 1); + scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, slice_ns, enq_flags); + return; + } + + /* + * If the task was re-enqueued due to the CPU being preempted by a + * higher priority scheduling class, just re-enqueue the task directly + * on the global DSQ. As we want another CPU to pick it up, find and + * kick an idle CPU. + */ + if (enq_flags & SCX_ENQ_REENQ) { + s32 cpu; + + scx_bpf_dispatch(p, SHARED_DSQ, 0, enq_flags); + cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE); + return; + } + + ring = bpf_map_lookup_elem(&queue_arr, &idx); + if (!ring) { + scx_bpf_error("failed to find ring %d", idx); + return; + } + + /* Queue on the selected FIFO. If the FIFO overflows, punt to global. */ + if (bpf_map_push_elem(ring, &pid, 0)) { + scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, enq_flags); + return; + } + + __sync_fetch_and_add(&nr_enqueued, 1); +} + +/* + * The BPF queue map doesn't support removal and sched_ext can handle spurious + * dispatches. qmap_dequeue() is only used to collect statistics. + */ +void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags) +{ + __sync_fetch_and_add(&nr_dequeued, 1); + if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC) + __sync_fetch_and_add(&nr_core_sched_execed, 1); +} + +static void update_core_sched_head_seq(struct task_struct *p) +{ + struct task_ctx *tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + int idx = weight_to_idx(p->scx.weight); + + if (tctx) + core_sched_head_seqs[idx] = tctx->core_sched_seq; + else + scx_bpf_error("task_ctx lookup failed"); +} + +void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev) +{ + struct task_struct *p; + struct cpu_ctx *cpuc; + u32 zero = 0, batch = dsp_batch ?: 1; + void *fifo; + s32 i, pid; + + if (scx_bpf_consume(SHARED_DSQ)) + return; + + if (dsp_inf_loop_after && nr_dispatched > dsp_inf_loop_after) { + /* + * PID 2 should be kthreadd which should mostly be idle and off + * the scheduler. Let's keep dispatching it to force the kernel + * to call this function over and over again. + */ + p = bpf_task_from_pid(2); + if (p) { + scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, 0); + bpf_task_release(p); + return; + } + } + + if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) { + scx_bpf_error("failed to look up cpu_ctx"); + return; + } + + for (i = 0; i < 5; i++) { + /* Advance the dispatch cursor and pick the fifo. */ + if (!cpuc->dsp_cnt) { + cpuc->dsp_idx = (cpuc->dsp_idx + 1) % 5; + cpuc->dsp_cnt = 1 << cpuc->dsp_idx; + } + + fifo = bpf_map_lookup_elem(&queue_arr, &cpuc->dsp_idx); + if (!fifo) { + scx_bpf_error("failed to find ring %llu", cpuc->dsp_idx); + return; + } + + /* Dispatch or advance. */ + bpf_repeat(BPF_MAX_LOOPS) { + if (bpf_map_pop_elem(fifo, &pid)) + break; + + p = bpf_task_from_pid(pid); + if (!p) + continue; + + update_core_sched_head_seq(p); + __sync_fetch_and_add(&nr_dispatched, 1); + scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, 0); + bpf_task_release(p); + batch--; + cpuc->dsp_cnt--; + if (!batch || !scx_bpf_dispatch_nr_slots()) { + scx_bpf_consume(SHARED_DSQ); + return; + } + if (!cpuc->dsp_cnt) + break; + } + + cpuc->dsp_cnt = 0; + } +} + +void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p) +{ + struct cpu_ctx *cpuc; + u32 zero = 0; + int idx; + + if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) { + scx_bpf_error("failed to look up cpu_ctx"); + return; + } + + /* + * Use the running avg of weights to select the target cpuperf level. + * This is a demonstration of the cpuperf feature rather than a + * practical strategy to regulate CPU frequency. + */ + cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4; + idx = weight_to_idx(cpuc->avg_weight); + cpuc->cpuperf_target = qidx_to_cpuperf_target[idx]; + + scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target); +} + +/* + * The distance from the head of the queue scaled by the weight of the queue. + * The lower the number, the older the task and the higher the priority. + */ +static s64 task_qdist(struct task_struct *p) +{ + int idx = weight_to_idx(p->scx.weight); + struct task_ctx *tctx; + s64 qdist; + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return 0; + } + + qdist = tctx->core_sched_seq - core_sched_head_seqs[idx]; + + /* + * As queue index increments, the priority doubles. The queue w/ index 3 + * is dispatched twice more frequently than 2. Reflect the difference by + * scaling qdists accordingly. Note that the shift amount needs to be + * flipped depending on the sign to avoid flipping priority direction. + */ + if (qdist >= 0) + return qdist << (4 - idx); + else + return qdist << idx; +} + +/* + * This is called to determine the task ordering when core-sched is picking + * tasks to execute on SMT siblings and should encode about the same ordering as + * the regular scheduling path. Use the priority-scaled distances from the head + * of the queues to compare the two tasks which should be consistent with the + * dispatch path behavior. + */ +bool BPF_STRUCT_OPS(qmap_core_sched_before, + struct task_struct *a, struct task_struct *b) +{ + return task_qdist(a) > task_qdist(b); +} + +void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args) +{ + u32 cnt; + + /* + * Called when @cpu is taken by a higher priority scheduling class. This + * makes @cpu no longer available for executing sched_ext tasks. As we + * don't want the tasks in @cpu's local dsq to sit there until @cpu + * becomes available again, re-enqueue them into the global dsq. See + * %SCX_ENQ_REENQ handling in qmap_enqueue(). + */ + cnt = scx_bpf_reenqueue_local(); + if (cnt) + __sync_fetch_and_add(&nr_reenqueued, cnt); +} + +s32 BPF_STRUCT_OPS(qmap_init_task, struct task_struct *p, + struct scx_init_task_args *args) +{ + if (p->tgid == disallow_tgid) + p->scx.disallow = true; + + /* + * @p is new. Let's ensure that its task_ctx is available. We can sleep + * in this function and the following will automatically use GFP_KERNEL. + */ + if (bpf_task_storage_get(&task_ctx_stor, p, 0, + BPF_LOCAL_STORAGE_GET_F_CREATE)) + return 0; + else + return -ENOMEM; +} + +void BPF_STRUCT_OPS(qmap_dump, struct scx_dump_ctx *dctx) +{ + s32 i, pid; + + if (suppress_dump) + return; + + bpf_for(i, 0, 5) { + void *fifo; + + if (!(fifo = bpf_map_lookup_elem(&queue_arr, &i))) + return; + + scx_bpf_dump("QMAP FIFO[%d]:", i); + bpf_repeat(4096) { + if (bpf_map_pop_elem(fifo, &pid)) + break; + scx_bpf_dump(" %d", pid); + } + scx_bpf_dump("\n"); + } +} + +void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle) +{ + u32 zero = 0; + struct cpu_ctx *cpuc; + + if (suppress_dump || idle) + return; + if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu))) + return; + + scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u", + cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight, + cpuc->cpuperf_target); +} + +void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p) +{ + struct task_ctx *taskc; + + if (suppress_dump) + return; + if (!(taskc = bpf_task_storage_get(&task_ctx_stor, p, 0, 0))) + return; + + scx_bpf_dump("QMAP: force_local=%d core_sched_seq=%llu", + taskc->force_local, taskc->core_sched_seq); +} + +/* + * Print out the online and possible CPU map using bpf_printk() as a + * demonstration of using the cpumask kfuncs and ops.cpu_on/offline(). + */ +static void print_cpus(void) +{ + const struct cpumask *possible, *online; + s32 cpu; + char buf[128] = "", *p; + int idx; + + possible = scx_bpf_get_possible_cpumask(); + online = scx_bpf_get_online_cpumask(); + + idx = 0; + bpf_for(cpu, 0, scx_bpf_nr_cpu_ids()) { + if (!(p = MEMBER_VPTR(buf, [idx++]))) + break; + if (bpf_cpumask_test_cpu(cpu, online)) + *p++ = 'O'; + else if (bpf_cpumask_test_cpu(cpu, possible)) + *p++ = 'X'; + else + *p++ = ' '; + + if ((cpu & 7) == 7) { + if (!(p = MEMBER_VPTR(buf, [idx++]))) + break; + *p++ = '|'; + } + } + buf[sizeof(buf) - 1] = '\0'; + + scx_bpf_put_cpumask(online); + scx_bpf_put_cpumask(possible); + + bpf_printk("CPUS: |%s", buf); +} + +void BPF_STRUCT_OPS(qmap_cpu_online, s32 cpu) +{ + bpf_printk("CPU %d coming online", cpu); + /* @cpu is already online at this point */ + print_cpus(); +} + +void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu) +{ + bpf_printk("CPU %d going offline", cpu); + /* @cpu is still online at this point */ + print_cpus(); +} + +struct monitor_timer { + struct bpf_timer timer; +}; + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY); + __uint(max_entries, 1); + __type(key, u32); + __type(value, struct monitor_timer); +} monitor_timer SEC(".maps"); + +/* + * Print out the min, avg and max performance levels of CPUs every second to + * demonstrate the cpuperf interface. + */ +static void monitor_cpuperf(void) +{ + u32 zero = 0, nr_cpu_ids; + u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0; + u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0; + const struct cpumask *online; + int i, nr_online_cpus = 0; + + nr_cpu_ids = scx_bpf_nr_cpu_ids(); + online = scx_bpf_get_online_cpumask(); + + bpf_for(i, 0, nr_cpu_ids) { + struct cpu_ctx *cpuc; + u32 cap, cur; + + if (!bpf_cpumask_test_cpu(i, online)) + continue; + nr_online_cpus++; + + /* collect the capacity and current cpuperf */ + cap = scx_bpf_cpuperf_cap(i); + cur = scx_bpf_cpuperf_cur(i); + + cur_min = cur < cur_min ? cur : cur_min; + cur_max = cur > cur_max ? cur : cur_max; + + /* + * $cur is relative to $cap. Scale it down accordingly so that + * it's in the same scale as other CPUs and $cur_sum/$cap_sum + * makes sense. + */ + cur_sum += cur * cap / SCX_CPUPERF_ONE; + cap_sum += cap; + + if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) { + scx_bpf_error("failed to look up cpu_ctx"); + goto out; + } + + /* collect target */ + cur = cpuc->cpuperf_target; + target_sum += cur; + target_min = cur < target_min ? cur : target_min; + target_max = cur > target_max ? cur : target_max; + } + + cpuperf_min = cur_min; + cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum; + cpuperf_max = cur_max; + + cpuperf_target_min = target_min; + cpuperf_target_avg = target_sum / nr_online_cpus; + cpuperf_target_max = target_max; +out: + scx_bpf_put_cpumask(online); +} + +/* + * Dump the currently queued tasks in the shared DSQ to demonstrate the usage of + * scx_bpf_dsq_nr_queued() and DSQ iterator. Raise the dispatch batch count to + * see meaningful dumps in the trace pipe. + */ +static void dump_shared_dsq(void) +{ + struct task_struct *p; + s32 nr; + + if (!(nr = scx_bpf_dsq_nr_queued(SHARED_DSQ))) + return; + + bpf_printk("Dumping %d tasks in SHARED_DSQ in reverse order", nr); + + bpf_rcu_read_lock(); + bpf_for_each(scx_dsq, p, SHARED_DSQ, SCX_DSQ_ITER_REV) + bpf_printk("%s[%d]", p->comm, p->pid); + bpf_rcu_read_unlock(); +} + +static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer) +{ + monitor_cpuperf(); + + if (print_shared_dsq) + dump_shared_dsq(); + + bpf_timer_start(timer, ONE_SEC_IN_NS, 0); + return 0; +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init) +{ + u32 key = 0; + struct bpf_timer *timer; + s32 ret; + + print_cpus(); + + ret = scx_bpf_create_dsq(SHARED_DSQ, -1); + if (ret) + return ret; + + timer = bpf_map_lookup_elem(&monitor_timer, &key); + if (!timer) + return -ESRCH; + + bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC); + bpf_timer_set_callback(timer, monitor_timerfn); + + return bpf_timer_start(timer, ONE_SEC_IN_NS, 0); +} + +void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SCX_OPS_DEFINE(qmap_ops, + .select_cpu = (void *)qmap_select_cpu, + .enqueue = (void *)qmap_enqueue, + .dequeue = (void *)qmap_dequeue, + .dispatch = (void *)qmap_dispatch, + .tick = (void *)qmap_tick, + .core_sched_before = (void *)qmap_core_sched_before, + .cpu_release = (void *)qmap_cpu_release, + .init_task = (void *)qmap_init_task, + .dump = (void *)qmap_dump, + .dump_cpu = (void *)qmap_dump_cpu, + .dump_task = (void *)qmap_dump_task, + .cpu_online = (void *)qmap_cpu_online, + .cpu_offline = (void *)qmap_cpu_offline, + .init = (void *)qmap_init, + .exit = (void *)qmap_exit, + .flags = SCX_OPS_ENQ_LAST, + .timeout_ms = 5000U, + .name = "qmap"); diff --git a/tools/sched_ext/scx_qmap.c b/tools/sched_ext/scx_qmap.c new file mode 100644 index 000000000000..c9ca30d62b2b --- /dev/null +++ b/tools/sched_ext/scx_qmap.c @@ -0,0 +1,144 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include "scx_qmap.bpf.skel.h" + +const char help_fmt[] = +"A simple five-level FIFO queue sched_ext scheduler.\n" +"\n" +"See the top-level comment in .bpf.c for more details.\n" +"\n" +"Usage: %s [-s SLICE_US] [-e COUNT] [-t COUNT] [-T COUNT] [-l COUNT] [-b COUNT]\n" +" [-P] [-d PID] [-D LEN] [-p] [-v]\n" +"\n" +" -s SLICE_US Override slice duration\n" +" -e COUNT Trigger scx_bpf_error() after COUNT enqueues\n" +" -t COUNT Stall every COUNT'th user thread\n" +" -T COUNT Stall every COUNT'th kernel thread\n" +" -l COUNT Trigger dispatch infinite looping after COUNT dispatches\n" +" -b COUNT Dispatch upto COUNT tasks together\n" +" -P Print out DSQ content to trace_pipe every second, use with -b\n" +" -d PID Disallow a process from switching into SCHED_EXT (-1 for self)\n" +" -D LEN Set scx_exit_info.dump buffer length\n" +" -S Suppress qmap-specific debug dump\n" +" -p Switch only tasks on SCHED_EXT policy instead of all\n" +" -v Print libbpf debug messages\n" +" -h Display this help and exit\n"; + +static bool verbose; +static volatile int exit_req; + +static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) +{ + if (level == LIBBPF_DEBUG && !verbose) + return 0; + return vfprintf(stderr, format, args); +} + +static void sigint_handler(int dummy) +{ + exit_req = 1; +} + +int main(int argc, char **argv) +{ + struct scx_qmap *skel; + struct bpf_link *link; + int opt; + + libbpf_set_print(libbpf_print_fn); + signal(SIGINT, sigint_handler); + signal(SIGTERM, sigint_handler); + + skel = SCX_OPS_OPEN(qmap_ops, scx_qmap); + + while ((opt = getopt(argc, argv, "s:e:t:T:l:b:Pd:D:Spvh")) != -1) { + switch (opt) { + case 's': + skel->rodata->slice_ns = strtoull(optarg, NULL, 0) * 1000; + break; + case 'e': + skel->bss->test_error_cnt = strtoul(optarg, NULL, 0); + break; + case 't': + skel->rodata->stall_user_nth = strtoul(optarg, NULL, 0); + break; + case 'T': + skel->rodata->stall_kernel_nth = strtoul(optarg, NULL, 0); + break; + case 'l': + skel->rodata->dsp_inf_loop_after = strtoul(optarg, NULL, 0); + break; + case 'b': + skel->rodata->dsp_batch = strtoul(optarg, NULL, 0); + break; + case 'P': + skel->rodata->print_shared_dsq = true; + break; + case 'd': + skel->rodata->disallow_tgid = strtol(optarg, NULL, 0); + if (skel->rodata->disallow_tgid < 0) + skel->rodata->disallow_tgid = getpid(); + break; + case 'D': + skel->struct_ops.qmap_ops->exit_dump_len = strtoul(optarg, NULL, 0); + break; + case 'S': + skel->rodata->suppress_dump = true; + break; + case 'p': + skel->struct_ops.qmap_ops->flags |= SCX_OPS_SWITCH_PARTIAL; + break; + case 'v': + verbose = true; + break; + default: + fprintf(stderr, help_fmt, basename(argv[0])); + return opt != 'h'; + } + } + + SCX_OPS_LOAD(skel, qmap_ops, scx_qmap, uei); + link = SCX_OPS_ATTACH(skel, qmap_ops, scx_qmap); + + while (!exit_req && !UEI_EXITED(skel, uei)) { + long nr_enqueued = skel->bss->nr_enqueued; + long nr_dispatched = skel->bss->nr_dispatched; + + printf("stats : enq=%lu dsp=%lu delta=%ld reenq=%"PRIu64" deq=%"PRIu64" core=%"PRIu64" enq_ddsp=%"PRIu64"\n", + nr_enqueued, nr_dispatched, nr_enqueued - nr_dispatched, + skel->bss->nr_reenqueued, skel->bss->nr_dequeued, + skel->bss->nr_core_sched_execed, + skel->bss->nr_ddsp_from_enq); + if (__COMPAT_has_ksym("scx_bpf_cpuperf_cur")) + printf("cpuperf: cur min/avg/max=%u/%u/%u target min/avg/max=%u/%u/%u\n", + skel->bss->cpuperf_min, + skel->bss->cpuperf_avg, + skel->bss->cpuperf_max, + skel->bss->cpuperf_target_min, + skel->bss->cpuperf_target_avg, + skel->bss->cpuperf_target_max); + fflush(stdout); + sleep(1); + } + + bpf_link__destroy(link); + UEI_REPORT(skel, uei); + scx_qmap__destroy(skel); + /* + * scx_qmap implements ops.cpu_on/offline() and doesn't need to restart + * on CPU hotplug events. + */ + return 0; +} diff --git a/tools/sched_ext/scx_show_state.py b/tools/sched_ext/scx_show_state.py new file mode 100644 index 000000000000..d457d2a74e1e --- /dev/null +++ b/tools/sched_ext/scx_show_state.py @@ -0,0 +1,39 @@ +#!/usr/bin/env drgn +# +# Copyright (C) 2024 Tejun Heo +# Copyright (C) 2024 Meta Platforms, Inc. and affiliates. + +desc = """ +This is a drgn script to show the current sched_ext state. +For more info on drgn, visit https://github.com/osandov/drgn. +""" + +import drgn +import sys + +def err(s): + print(s, file=sys.stderr, flush=True) + sys.exit(1) + +def read_int(name): + return int(prog[name].value_()) + +def read_atomic(name): + return prog[name].counter.value_() + +def read_static_key(name): + return prog[name].key.enabled.counter.value_() + +def ops_state_str(state): + return prog['scx_ops_enable_state_str'][state].string_().decode() + +ops = prog['scx_ops'] +enable_state = read_atomic("scx_ops_enable_state_var") + +print(f'ops : {ops.name.string_().decode()}') +print(f'enabled : {read_static_key("__scx_ops_enabled")}') +print(f'switching_all : {read_int("scx_switching_all")}') +print(f'switched_all : {read_static_key("__scx_switched_all")}') +print(f'enable_state : {ops_state_str(enable_state)} ({enable_state})') +print(f'bypass_depth : {read_atomic("scx_ops_bypass_depth")}') +print(f'nr_rejected : {read_atomic("scx_nr_rejected")}') diff --git a/tools/sched_ext/scx_simple.bpf.c b/tools/sched_ext/scx_simple.bpf.c new file mode 100644 index 000000000000..ed7e8d535fc5 --- /dev/null +++ b/tools/sched_ext/scx_simple.bpf.c @@ -0,0 +1,156 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A simple scheduler. + * + * By default, it operates as a simple global weighted vtime scheduler and can + * be switched to FIFO scheduling. It also demonstrates the following niceties. + * + * - Statistics tracking how many tasks are queued to local and global dsq's. + * - Termination notification for userspace. + * + * While very simple, this scheduler should work reasonably well on CPUs with a + * uniform L3 cache topology. While preemption is not implemented, the fact that + * the scheduling queue is shared across all CPUs means that whatever is at the + * front of the queue is likely to be executed fairly quickly given enough + * number of CPUs. The FIFO scheduling mode may be beneficial to some workloads + * but comes with the usual problems with FIFO scheduling where saturating + * threads can easily drown out interactive ones. + * + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#include + +char _license[] SEC("license") = "GPL"; + +const volatile bool fifo_sched; + +static u64 vtime_now; +UEI_DEFINE(uei); + +/* + * Built-in DSQs such as SCX_DSQ_GLOBAL cannot be used as priority queues + * (meaning, cannot be dispatched to with scx_bpf_dispatch_vtime()). We + * therefore create a separate DSQ with ID 0 that we dispatch to and consume + * from. If scx_simple only supported global FIFO scheduling, then we could + * just use SCX_DSQ_GLOBAL. + */ +#define SHARED_DSQ 0 + +struct { + __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); + __uint(key_size, sizeof(u32)); + __uint(value_size, sizeof(u64)); + __uint(max_entries, 2); /* [local, global] */ +} stats SEC(".maps"); + +static void stat_inc(u32 idx) +{ + u64 *cnt_p = bpf_map_lookup_elem(&stats, &idx); + if (cnt_p) + (*cnt_p)++; +} + +static inline bool vtime_before(u64 a, u64 b) +{ + return (s64)(a - b) < 0; +} + +s32 BPF_STRUCT_OPS(simple_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags) +{ + bool is_idle = false; + s32 cpu; + + cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &is_idle); + if (is_idle) { + stat_inc(0); /* count local queueing */ + scx_bpf_dispatch(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, 0); + } + + return cpu; +} + +void BPF_STRUCT_OPS(simple_enqueue, struct task_struct *p, u64 enq_flags) +{ + stat_inc(1); /* count global queueing */ + + if (fifo_sched) { + scx_bpf_dispatch(p, SHARED_DSQ, SCX_SLICE_DFL, enq_flags); + } else { + u64 vtime = p->scx.dsq_vtime; + + /* + * Limit the amount of budget that an idling task can accumulate + * to one slice. + */ + if (vtime_before(vtime, vtime_now - SCX_SLICE_DFL)) + vtime = vtime_now - SCX_SLICE_DFL; + + scx_bpf_dispatch_vtime(p, SHARED_DSQ, SCX_SLICE_DFL, vtime, + enq_flags); + } +} + +void BPF_STRUCT_OPS(simple_dispatch, s32 cpu, struct task_struct *prev) +{ + scx_bpf_consume(SHARED_DSQ); +} + +void BPF_STRUCT_OPS(simple_running, struct task_struct *p) +{ + if (fifo_sched) + return; + + /* + * Global vtime always progresses forward as tasks start executing. The + * test and update can be performed concurrently from multiple CPUs and + * thus racy. Any error should be contained and temporary. Let's just + * live with it. + */ + if (vtime_before(vtime_now, p->scx.dsq_vtime)) + vtime_now = p->scx.dsq_vtime; +} + +void BPF_STRUCT_OPS(simple_stopping, struct task_struct *p, bool runnable) +{ + if (fifo_sched) + return; + + /* + * Scale the execution time by the inverse of the weight and charge. + * + * Note that the default yield implementation yields by setting + * @p->scx.slice to zero and the following would treat the yielding task + * as if it has consumed all its slice. If this penalizes yielding tasks + * too much, determine the execution time by taking explicit timestamps + * instead of depending on @p->scx.slice. + */ + p->scx.dsq_vtime += (SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight; +} + +void BPF_STRUCT_OPS(simple_enable, struct task_struct *p) +{ + p->scx.dsq_vtime = vtime_now; +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(simple_init) +{ + return scx_bpf_create_dsq(SHARED_DSQ, -1); +} + +void BPF_STRUCT_OPS(simple_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SCX_OPS_DEFINE(simple_ops, + .select_cpu = (void *)simple_select_cpu, + .enqueue = (void *)simple_enqueue, + .dispatch = (void *)simple_dispatch, + .running = (void *)simple_running, + .stopping = (void *)simple_stopping, + .enable = (void *)simple_enable, + .init = (void *)simple_init, + .exit = (void *)simple_exit, + .name = "simple"); diff --git a/tools/sched_ext/scx_simple.c b/tools/sched_ext/scx_simple.c new file mode 100644 index 000000000000..76d83199545c --- /dev/null +++ b/tools/sched_ext/scx_simple.c @@ -0,0 +1,107 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2022 Tejun Heo + * Copyright (c) 2022 David Vernet + */ +#include +#include +#include +#include +#include +#include +#include "scx_simple.bpf.skel.h" + +const char help_fmt[] = +"A simple sched_ext scheduler.\n" +"\n" +"See the top-level comment in .bpf.c for more details.\n" +"\n" +"Usage: %s [-f] [-v]\n" +"\n" +" -f Use FIFO scheduling instead of weighted vtime scheduling\n" +" -v Print libbpf debug messages\n" +" -h Display this help and exit\n"; + +static bool verbose; +static volatile int exit_req; + +static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) +{ + if (level == LIBBPF_DEBUG && !verbose) + return 0; + return vfprintf(stderr, format, args); +} + +static void sigint_handler(int simple) +{ + exit_req = 1; +} + +static void read_stats(struct scx_simple *skel, __u64 *stats) +{ + int nr_cpus = libbpf_num_possible_cpus(); + __u64 cnts[2][nr_cpus]; + __u32 idx; + + memset(stats, 0, sizeof(stats[0]) * 2); + + for (idx = 0; idx < 2; idx++) { + int ret, cpu; + + ret = bpf_map_lookup_elem(bpf_map__fd(skel->maps.stats), + &idx, cnts[idx]); + if (ret < 0) + continue; + for (cpu = 0; cpu < nr_cpus; cpu++) + stats[idx] += cnts[idx][cpu]; + } +} + +int main(int argc, char **argv) +{ + struct scx_simple *skel; + struct bpf_link *link; + __u32 opt; + __u64 ecode; + + libbpf_set_print(libbpf_print_fn); + signal(SIGINT, sigint_handler); + signal(SIGTERM, sigint_handler); +restart: + skel = SCX_OPS_OPEN(simple_ops, scx_simple); + + while ((opt = getopt(argc, argv, "fvh")) != -1) { + switch (opt) { + case 'f': + skel->rodata->fifo_sched = true; + break; + case 'v': + verbose = true; + break; + default: + fprintf(stderr, help_fmt, basename(argv[0])); + return opt != 'h'; + } + } + + SCX_OPS_LOAD(skel, simple_ops, scx_simple, uei); + link = SCX_OPS_ATTACH(skel, simple_ops, scx_simple); + + while (!exit_req && !UEI_EXITED(skel, uei)) { + __u64 stats[2]; + + read_stats(skel, stats); + printf("local=%llu global=%llu\n", stats[0], stats[1]); + fflush(stdout); + sleep(1); + } + + bpf_link__destroy(link); + ecode = UEI_REPORT(skel, uei); + scx_simple__destroy(skel); + + if (UEI_ECODE_RESTART(ecode)) + goto restart; + return 0; +} diff --git a/tools/testing/selftests/sched_ext/.gitignore b/tools/testing/selftests/sched_ext/.gitignore new file mode 100644 index 000000000000..ae5491a114c0 --- /dev/null +++ b/tools/testing/selftests/sched_ext/.gitignore @@ -0,0 +1,6 @@ +* +!*.c +!*.h +!Makefile +!.gitignore +!config diff --git a/tools/testing/selftests/sched_ext/Makefile b/tools/testing/selftests/sched_ext/Makefile new file mode 100644 index 000000000000..0754a2c110a1 --- /dev/null +++ b/tools/testing/selftests/sched_ext/Makefile @@ -0,0 +1,218 @@ +# SPDX-License-Identifier: GPL-2.0 +# Copyright (c) 2022 Meta Platforms, Inc. and affiliates. +include ../../../build/Build.include +include ../../../scripts/Makefile.arch +include ../../../scripts/Makefile.include +include ../lib.mk + +ifneq ($(LLVM),) +ifneq ($(filter %/,$(LLVM)),) +LLVM_PREFIX := $(LLVM) +else ifneq ($(filter -%,$(LLVM)),) +LLVM_SUFFIX := $(LLVM) +endif + +CC := $(LLVM_PREFIX)clang$(LLVM_SUFFIX) $(CLANG_FLAGS) -fintegrated-as +else +CC := gcc +endif # LLVM + +ifneq ($(CROSS_COMPILE),) +$(error CROSS_COMPILE not supported for scx selftests) +endif # CROSS_COMPILE + +CURDIR := $(abspath .) +REPOROOT := $(abspath ../../../..) +TOOLSDIR := $(REPOROOT)/tools +LIBDIR := $(TOOLSDIR)/lib +BPFDIR := $(LIBDIR)/bpf +TOOLSINCDIR := $(TOOLSDIR)/include +BPFTOOLDIR := $(TOOLSDIR)/bpf/bpftool +APIDIR := $(TOOLSINCDIR)/uapi +GENDIR := $(REPOROOT)/include/generated +GENHDR := $(GENDIR)/autoconf.h +SCXTOOLSDIR := $(TOOLSDIR)/sched_ext +SCXTOOLSINCDIR := $(TOOLSDIR)/sched_ext/include + +OUTPUT_DIR := $(CURDIR)/build +OBJ_DIR := $(OUTPUT_DIR)/obj +INCLUDE_DIR := $(OUTPUT_DIR)/include +BPFOBJ_DIR := $(OBJ_DIR)/libbpf +SCXOBJ_DIR := $(OBJ_DIR)/sched_ext +BPFOBJ := $(BPFOBJ_DIR)/libbpf.a +LIBBPF_OUTPUT := $(OBJ_DIR)/libbpf/libbpf.a +DEFAULT_BPFTOOL := $(OUTPUT_DIR)/sbin/bpftool +HOST_BUILD_DIR := $(OBJ_DIR) +HOST_OUTPUT_DIR := $(OUTPUT_DIR) + +VMLINUX_BTF_PATHS ?= ../../../../vmlinux \ + /sys/kernel/btf/vmlinux \ + /boot/vmlinux-$(shell uname -r) +VMLINUX_BTF ?= $(abspath $(firstword $(wildcard $(VMLINUX_BTF_PATHS)))) +ifeq ($(VMLINUX_BTF),) +$(error Cannot find a vmlinux for VMLINUX_BTF at any of "$(VMLINUX_BTF_PATHS)") +endif + +BPFTOOL ?= $(DEFAULT_BPFTOOL) + +ifneq ($(wildcard $(GENHDR)),) + GENFLAGS := -DHAVE_GENHDR +endif + +CFLAGS += -g -O2 -rdynamic -pthread -Wall -Werror $(GENFLAGS) \ + -I$(INCLUDE_DIR) -I$(GENDIR) -I$(LIBDIR) \ + -I$(TOOLSINCDIR) -I$(APIDIR) -I$(CURDIR)/include -I$(SCXTOOLSINCDIR) + +# Silence some warnings when compiled with clang +ifneq ($(LLVM),) +CFLAGS += -Wno-unused-command-line-argument +endif + +LDFLAGS = -lelf -lz -lpthread -lzstd + +IS_LITTLE_ENDIAN = $(shell $(CC) -dM -E - &1 \ + | sed -n '/<...> search starts here:/,/End of search list./{ s| \(/.*\)|-idirafter \1|p }') \ +$(shell $(1) -dM -E - $@ +else + $(call msg,CP,,$@) + $(Q)cp "$(VMLINUX_H)" $@ +endif + +$(SCXOBJ_DIR)/%.bpf.o: %.bpf.c $(INCLUDE_DIR)/vmlinux.h | $(BPFOBJ) $(SCXOBJ_DIR) + $(call msg,CLNG-BPF,,$(notdir $@)) + $(Q)$(CLANG) $(BPF_CFLAGS) -target bpf -c $< -o $@ + +$(INCLUDE_DIR)/%.bpf.skel.h: $(SCXOBJ_DIR)/%.bpf.o $(INCLUDE_DIR)/vmlinux.h $(BPFTOOL) | $(INCLUDE_DIR) + $(eval sched=$(notdir $@)) + $(call msg,GEN-SKEL,,$(sched)) + $(Q)$(BPFTOOL) gen object $(<:.o=.linked1.o) $< + $(Q)$(BPFTOOL) gen object $(<:.o=.linked2.o) $(<:.o=.linked1.o) + $(Q)$(BPFTOOL) gen object $(<:.o=.linked3.o) $(<:.o=.linked2.o) + $(Q)diff $(<:.o=.linked2.o) $(<:.o=.linked3.o) + $(Q)$(BPFTOOL) gen skeleton $(<:.o=.linked3.o) name $(subst .bpf.skel.h,,$(sched)) > $@ + $(Q)$(BPFTOOL) gen subskeleton $(<:.o=.linked3.o) name $(subst .bpf.skel.h,,$(sched)) > $(@:.skel.h=.subskel.h) + +################ +# C schedulers # +################ + +override define CLEAN + rm -rf $(OUTPUT_DIR) + rm -f *.o *.bpf.o *.bpf.skel.h *.bpf.subskel.h + rm -f $(TEST_GEN_PROGS) + rm -f runner +endef + +# Every testcase takes all of the BPF progs are dependencies by default. This +# allows testcases to load any BPF scheduler, which is useful for testcases +# that don't need their own prog to run their test. +all_test_bpfprogs := $(foreach prog,$(wildcard *.bpf.c),$(INCLUDE_DIR)/$(patsubst %.c,%.skel.h,$(prog))) + +auto-test-targets := \ + create_dsq \ + enq_last_no_enq_fails \ + enq_select_cpu_fails \ + ddsp_bogus_dsq_fail \ + ddsp_vtimelocal_fail \ + dsp_local_on \ + exit \ + hotplug \ + init_enable_count \ + maximal \ + maybe_null \ + minimal \ + prog_run \ + reload_loop \ + select_cpu_dfl \ + select_cpu_dfl_nodispatch \ + select_cpu_dispatch \ + select_cpu_dispatch_bad_dsq \ + select_cpu_dispatch_dbl_dsp \ + select_cpu_vtime \ + test_example \ + +testcase-targets := $(addsuffix .o,$(addprefix $(SCXOBJ_DIR)/,$(auto-test-targets))) + +$(SCXOBJ_DIR)/runner.o: runner.c | $(SCXOBJ_DIR) + $(CC) $(CFLAGS) -c $< -o $@ + +# Create all of the test targets object files, whose testcase objects will be +# registered into the runner in ELF constructors. +# +# Note that we must do double expansion here in order to support conditionally +# compiling BPF object files only if one is present, as the wildcard Make +# function doesn't support using implicit rules otherwise. +$(testcase-targets): $(SCXOBJ_DIR)/%.o: %.c $(SCXOBJ_DIR)/runner.o $(all_test_bpfprogs) | $(SCXOBJ_DIR) + $(eval test=$(patsubst %.o,%.c,$(notdir $@))) + $(CC) $(CFLAGS) -c $< -o $@ $(SCXOBJ_DIR)/runner.o + +$(SCXOBJ_DIR)/util.o: util.c | $(SCXOBJ_DIR) + $(CC) $(CFLAGS) -c $< -o $@ + +runner: $(SCXOBJ_DIR)/runner.o $(SCXOBJ_DIR)/util.o $(BPFOBJ) $(testcase-targets) + @echo "$(testcase-targets)" + $(CC) $(CFLAGS) -o $@ $^ $(LDFLAGS) + +TEST_GEN_PROGS := runner + +all: runner + +.PHONY: all clean help + +.DEFAULT_GOAL := all + +.DELETE_ON_ERROR: + +.SECONDARY: diff --git a/tools/testing/selftests/sched_ext/config b/tools/testing/selftests/sched_ext/config new file mode 100644 index 000000000000..0de9b4ee249d --- /dev/null +++ b/tools/testing/selftests/sched_ext/config @@ -0,0 +1,9 @@ +CONFIG_SCHED_DEBUG=y +CONFIG_SCHED_CLASS_EXT=y +CONFIG_CGROUPS=y +CONFIG_CGROUP_SCHED=y +CONFIG_EXT_GROUP_SCHED=y +CONFIG_BPF=y +CONFIG_BPF_SYSCALL=y +CONFIG_DEBUG_INFO=y +CONFIG_DEBUG_INFO_BTF=y diff --git a/tools/testing/selftests/sched_ext/create_dsq.bpf.c b/tools/testing/selftests/sched_ext/create_dsq.bpf.c new file mode 100644 index 000000000000..23f79ed343f0 --- /dev/null +++ b/tools/testing/selftests/sched_ext/create_dsq.bpf.c @@ -0,0 +1,58 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Create and destroy DSQs in a loop. + * + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#include + +char _license[] SEC("license") = "GPL"; + +void BPF_STRUCT_OPS(create_dsq_exit_task, struct task_struct *p, + struct scx_exit_task_args *args) +{ + scx_bpf_destroy_dsq(p->pid); +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(create_dsq_init_task, struct task_struct *p, + struct scx_init_task_args *args) +{ + s32 err; + + err = scx_bpf_create_dsq(p->pid, -1); + if (err) + scx_bpf_error("Failed to create DSQ for %s[%d]", + p->comm, p->pid); + + return err; +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(create_dsq_init) +{ + u32 i; + s32 err; + + bpf_for(i, 0, 1024) { + err = scx_bpf_create_dsq(i, -1); + if (err) { + scx_bpf_error("Failed to create DSQ %d", i); + return 0; + } + } + + bpf_for(i, 0, 1024) { + scx_bpf_destroy_dsq(i); + } + + return 0; +} + +SEC(".struct_ops.link") +struct sched_ext_ops create_dsq_ops = { + .init_task = create_dsq_init_task, + .exit_task = create_dsq_exit_task, + .init = create_dsq_init, + .name = "create_dsq", +}; diff --git a/tools/testing/selftests/sched_ext/create_dsq.c b/tools/testing/selftests/sched_ext/create_dsq.c new file mode 100644 index 000000000000..fa946d9146d4 --- /dev/null +++ b/tools/testing/selftests/sched_ext/create_dsq.c @@ -0,0 +1,57 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include "create_dsq.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct create_dsq *skel; + + skel = create_dsq__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct create_dsq *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.create_dsq_ops); + if (!link) { + SCX_ERR("Failed to attach scheduler"); + return SCX_TEST_FAIL; + } + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct create_dsq *skel = ctx; + + create_dsq__destroy(skel); +} + +struct scx_test create_dsq = { + .name = "create_dsq", + .description = "Create and destroy a dsq in a loop", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&create_dsq) diff --git a/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.bpf.c b/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.bpf.c new file mode 100644 index 000000000000..e97ad41d354a --- /dev/null +++ b/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.bpf.c @@ -0,0 +1,42 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include + +char _license[] SEC("license") = "GPL"; + +UEI_DEFINE(uei); + +s32 BPF_STRUCT_OPS(ddsp_bogus_dsq_fail_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + s32 cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + + if (cpu >= 0) { + /* + * If we dispatch to a bogus DSQ that will fall back to the + * builtin global DSQ, we fail gracefully. + */ + scx_bpf_dispatch_vtime(p, 0xcafef00d, SCX_SLICE_DFL, + p->scx.dsq_vtime, 0); + return cpu; + } + + return prev_cpu; +} + +void BPF_STRUCT_OPS(ddsp_bogus_dsq_fail_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops ddsp_bogus_dsq_fail_ops = { + .select_cpu = ddsp_bogus_dsq_fail_select_cpu, + .exit = ddsp_bogus_dsq_fail_exit, + .name = "ddsp_bogus_dsq_fail", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.c b/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.c new file mode 100644 index 000000000000..e65d22f23f3b --- /dev/null +++ b/tools/testing/selftests/sched_ext/ddsp_bogus_dsq_fail.c @@ -0,0 +1,57 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include +#include +#include +#include +#include "ddsp_bogus_dsq_fail.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct ddsp_bogus_dsq_fail *skel; + + skel = ddsp_bogus_dsq_fail__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct ddsp_bogus_dsq_fail *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.ddsp_bogus_dsq_fail_ops); + SCX_FAIL_IF(!link, "Failed to attach struct_ops"); + + sleep(1); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_ERROR)); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct ddsp_bogus_dsq_fail *skel = ctx; + + ddsp_bogus_dsq_fail__destroy(skel); +} + +struct scx_test ddsp_bogus_dsq_fail = { + .name = "ddsp_bogus_dsq_fail", + .description = "Verify we gracefully fail, and fall back to using a " + "built-in DSQ, if we do a direct dispatch to an invalid" + " DSQ in ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&ddsp_bogus_dsq_fail) diff --git a/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.bpf.c b/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.bpf.c new file mode 100644 index 000000000000..dde7e7dafbfb --- /dev/null +++ b/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.bpf.c @@ -0,0 +1,39 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include + +char _license[] SEC("license") = "GPL"; + +UEI_DEFINE(uei); + +s32 BPF_STRUCT_OPS(ddsp_vtimelocal_fail_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + s32 cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + + if (cpu >= 0) { + /* Shouldn't be allowed to vtime dispatch to a builtin DSQ. */ + scx_bpf_dispatch_vtime(p, SCX_DSQ_LOCAL, SCX_SLICE_DFL, + p->scx.dsq_vtime, 0); + return cpu; + } + + return prev_cpu; +} + +void BPF_STRUCT_OPS(ddsp_vtimelocal_fail_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops ddsp_vtimelocal_fail_ops = { + .select_cpu = ddsp_vtimelocal_fail_select_cpu, + .exit = ddsp_vtimelocal_fail_exit, + .name = "ddsp_vtimelocal_fail", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.c b/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.c new file mode 100644 index 000000000000..abafee587cd6 --- /dev/null +++ b/tools/testing/selftests/sched_ext/ddsp_vtimelocal_fail.c @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include +#include +#include +#include "ddsp_vtimelocal_fail.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct ddsp_vtimelocal_fail *skel; + + skel = ddsp_vtimelocal_fail__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct ddsp_vtimelocal_fail *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.ddsp_vtimelocal_fail_ops); + SCX_FAIL_IF(!link, "Failed to attach struct_ops"); + + sleep(1); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_ERROR)); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct ddsp_vtimelocal_fail *skel = ctx; + + ddsp_vtimelocal_fail__destroy(skel); +} + +struct scx_test ddsp_vtimelocal_fail = { + .name = "ddsp_vtimelocal_fail", + .description = "Verify we gracefully fail, and fall back to using a " + "built-in DSQ, if we do a direct vtime dispatch to a " + "built-in DSQ from DSQ in ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&ddsp_vtimelocal_fail) diff --git a/tools/testing/selftests/sched_ext/dsp_local_on.bpf.c b/tools/testing/selftests/sched_ext/dsp_local_on.bpf.c new file mode 100644 index 000000000000..efb4672decb4 --- /dev/null +++ b/tools/testing/selftests/sched_ext/dsp_local_on.bpf.c @@ -0,0 +1,65 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include + +char _license[] SEC("license") = "GPL"; +const volatile s32 nr_cpus; + +UEI_DEFINE(uei); + +struct { + __uint(type, BPF_MAP_TYPE_QUEUE); + __uint(max_entries, 8192); + __type(value, s32); +} queue SEC(".maps"); + +s32 BPF_STRUCT_OPS(dsp_local_on_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + return prev_cpu; +} + +void BPF_STRUCT_OPS(dsp_local_on_enqueue, struct task_struct *p, + u64 enq_flags) +{ + s32 pid = p->pid; + + if (bpf_map_push_elem(&queue, &pid, 0)) + scx_bpf_error("Failed to enqueue %s[%d]", p->comm, p->pid); +} + +void BPF_STRUCT_OPS(dsp_local_on_dispatch, s32 cpu, struct task_struct *prev) +{ + s32 pid, target; + struct task_struct *p; + + if (bpf_map_pop_elem(&queue, &pid)) + return; + + p = bpf_task_from_pid(pid); + if (!p) + return; + + target = bpf_get_prandom_u32() % nr_cpus; + + scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | target, SCX_SLICE_DFL, 0); + bpf_task_release(p); +} + +void BPF_STRUCT_OPS(dsp_local_on_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops dsp_local_on_ops = { + .select_cpu = dsp_local_on_select_cpu, + .enqueue = dsp_local_on_enqueue, + .dispatch = dsp_local_on_dispatch, + .exit = dsp_local_on_exit, + .name = "dsp_local_on", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/dsp_local_on.c b/tools/testing/selftests/sched_ext/dsp_local_on.c new file mode 100644 index 000000000000..472851b56854 --- /dev/null +++ b/tools/testing/selftests/sched_ext/dsp_local_on.c @@ -0,0 +1,58 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include "dsp_local_on.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct dsp_local_on *skel; + + skel = dsp_local_on__open(); + SCX_FAIL_IF(!skel, "Failed to open"); + + skel->rodata->nr_cpus = libbpf_num_possible_cpus(); + SCX_FAIL_IF(dsp_local_on__load(skel), "Failed to load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct dsp_local_on *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.dsp_local_on_ops); + SCX_FAIL_IF(!link, "Failed to attach struct_ops"); + + /* Just sleeping is fine, plenty of scheduling events happening */ + sleep(1); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_ERROR)); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct dsp_local_on *skel = ctx; + + dsp_local_on__destroy(skel); +} + +struct scx_test dsp_local_on = { + .name = "dsp_local_on", + .description = "Verify we can directly dispatch tasks to a local DSQs " + "from osp.dispatch()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&dsp_local_on) diff --git a/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.bpf.c b/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.bpf.c new file mode 100644 index 000000000000..b0b99531d5d5 --- /dev/null +++ b/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.bpf.c @@ -0,0 +1,21 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +SEC(".struct_ops.link") +struct sched_ext_ops enq_last_no_enq_fails_ops = { + .name = "enq_last_no_enq_fails", + /* Need to define ops.enqueue() with SCX_OPS_ENQ_LAST */ + .flags = SCX_OPS_ENQ_LAST, + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.c b/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.c new file mode 100644 index 000000000000..2a3eda5e2c0b --- /dev/null +++ b/tools/testing/selftests/sched_ext/enq_last_no_enq_fails.c @@ -0,0 +1,60 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "enq_last_no_enq_fails.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct enq_last_no_enq_fails *skel; + + skel = enq_last_no_enq_fails__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct enq_last_no_enq_fails *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.enq_last_no_enq_fails_ops); + if (link) { + SCX_ERR("Incorrectly succeeded in to attaching scheduler"); + return SCX_TEST_FAIL; + } + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct enq_last_no_enq_fails *skel = ctx; + + enq_last_no_enq_fails__destroy(skel); +} + +struct scx_test enq_last_no_enq_fails = { + .name = "enq_last_no_enq_fails", + .description = "Verify we fail to load a scheduler if we specify " + "the SCX_OPS_ENQ_LAST flag without defining " + "ops.enqueue()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&enq_last_no_enq_fails) diff --git a/tools/testing/selftests/sched_ext/enq_select_cpu_fails.bpf.c b/tools/testing/selftests/sched_ext/enq_select_cpu_fails.bpf.c new file mode 100644 index 000000000000..b3dfc1033cd6 --- /dev/null +++ b/tools/testing/selftests/sched_ext/enq_select_cpu_fails.bpf.c @@ -0,0 +1,43 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +/* Manually specify the signature until the kfunc is added to the scx repo. */ +s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, + bool *found) __ksym; + +s32 BPF_STRUCT_OPS(enq_select_cpu_fails_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + return prev_cpu; +} + +void BPF_STRUCT_OPS(enq_select_cpu_fails_enqueue, struct task_struct *p, + u64 enq_flags) +{ + /* + * Need to initialize the variable or the verifier will fail to load. + * Improving these semantics is actively being worked on. + */ + bool found = false; + + /* Can only call from ops.select_cpu() */ + scx_bpf_select_cpu_dfl(p, 0, 0, &found); + + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); +} + +SEC(".struct_ops.link") +struct sched_ext_ops enq_select_cpu_fails_ops = { + .select_cpu = enq_select_cpu_fails_select_cpu, + .enqueue = enq_select_cpu_fails_enqueue, + .name = "enq_select_cpu_fails", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/enq_select_cpu_fails.c b/tools/testing/selftests/sched_ext/enq_select_cpu_fails.c new file mode 100644 index 000000000000..dd1350e5f002 --- /dev/null +++ b/tools/testing/selftests/sched_ext/enq_select_cpu_fails.c @@ -0,0 +1,61 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "enq_select_cpu_fails.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct enq_select_cpu_fails *skel; + + skel = enq_select_cpu_fails__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct enq_select_cpu_fails *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.enq_select_cpu_fails_ops); + if (!link) { + SCX_ERR("Failed to attach scheduler"); + return SCX_TEST_FAIL; + } + + sleep(1); + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct enq_select_cpu_fails *skel = ctx; + + enq_select_cpu_fails__destroy(skel); +} + +struct scx_test enq_select_cpu_fails = { + .name = "enq_select_cpu_fails", + .description = "Verify we fail to call scx_bpf_select_cpu_dfl() " + "from ops.enqueue()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&enq_select_cpu_fails) diff --git a/tools/testing/selftests/sched_ext/exit.bpf.c b/tools/testing/selftests/sched_ext/exit.bpf.c new file mode 100644 index 000000000000..ae12ddaac921 --- /dev/null +++ b/tools/testing/selftests/sched_ext/exit.bpf.c @@ -0,0 +1,84 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#include + +char _license[] SEC("license") = "GPL"; + +#include "exit_test.h" + +const volatile int exit_point; +UEI_DEFINE(uei); + +#define EXIT_CLEANLY() scx_bpf_exit(exit_point, "%d", exit_point) + +s32 BPF_STRUCT_OPS(exit_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + bool found; + + if (exit_point == EXIT_SELECT_CPU) + EXIT_CLEANLY(); + + return scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, &found); +} + +void BPF_STRUCT_OPS(exit_enqueue, struct task_struct *p, u64 enq_flags) +{ + if (exit_point == EXIT_ENQUEUE) + EXIT_CLEANLY(); + + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); +} + +void BPF_STRUCT_OPS(exit_dispatch, s32 cpu, struct task_struct *p) +{ + if (exit_point == EXIT_DISPATCH) + EXIT_CLEANLY(); + + scx_bpf_consume(SCX_DSQ_GLOBAL); +} + +void BPF_STRUCT_OPS(exit_enable, struct task_struct *p) +{ + if (exit_point == EXIT_ENABLE) + EXIT_CLEANLY(); +} + +s32 BPF_STRUCT_OPS(exit_init_task, struct task_struct *p, + struct scx_init_task_args *args) +{ + if (exit_point == EXIT_INIT_TASK) + EXIT_CLEANLY(); + + return 0; +} + +void BPF_STRUCT_OPS(exit_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(exit_init) +{ + if (exit_point == EXIT_INIT) + EXIT_CLEANLY(); + + return 0; +} + +SEC(".struct_ops.link") +struct sched_ext_ops exit_ops = { + .select_cpu = exit_select_cpu, + .enqueue = exit_enqueue, + .dispatch = exit_dispatch, + .init_task = exit_init_task, + .enable = exit_enable, + .exit = exit_exit, + .init = exit_init, + .name = "exit", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/exit.c b/tools/testing/selftests/sched_ext/exit.c new file mode 100644 index 000000000000..31bcd06e21cd --- /dev/null +++ b/tools/testing/selftests/sched_ext/exit.c @@ -0,0 +1,55 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include +#include "exit.bpf.skel.h" +#include "scx_test.h" + +#include "exit_test.h" + +static enum scx_test_status run(void *ctx) +{ + enum exit_test_case tc; + + for (tc = 0; tc < NUM_EXITS; tc++) { + struct exit *skel; + struct bpf_link *link; + char buf[16]; + + skel = exit__open(); + skel->rodata->exit_point = tc; + exit__load(skel); + link = bpf_map__attach_struct_ops(skel->maps.exit_ops); + if (!link) { + SCX_ERR("Failed to attach scheduler"); + exit__destroy(skel); + return SCX_TEST_FAIL; + } + + /* Assumes uei.kind is written last */ + while (skel->data->uei.kind == EXIT_KIND(SCX_EXIT_NONE)) + sched_yield(); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_UNREG_BPF)); + SCX_EQ(skel->data->uei.exit_code, tc); + sprintf(buf, "%d", tc); + SCX_ASSERT(!strcmp(skel->data->uei.msg, buf)); + bpf_link__destroy(link); + exit__destroy(skel); + } + + return SCX_TEST_PASS; +} + +struct scx_test exit_test = { + .name = "exit", + .description = "Verify we can cleanly exit a scheduler in multiple places", + .run = run, +}; +REGISTER_SCX_TEST(&exit_test) diff --git a/tools/testing/selftests/sched_ext/exit_test.h b/tools/testing/selftests/sched_ext/exit_test.h new file mode 100644 index 000000000000..94f0268b9cb8 --- /dev/null +++ b/tools/testing/selftests/sched_ext/exit_test.h @@ -0,0 +1,20 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#ifndef __EXIT_TEST_H__ +#define __EXIT_TEST_H__ + +enum exit_test_case { + EXIT_SELECT_CPU, + EXIT_ENQUEUE, + EXIT_DISPATCH, + EXIT_ENABLE, + EXIT_INIT_TASK, + EXIT_INIT, + NUM_EXITS, +}; + +#endif // # __EXIT_TEST_H__ diff --git a/tools/testing/selftests/sched_ext/hotplug.bpf.c b/tools/testing/selftests/sched_ext/hotplug.bpf.c new file mode 100644 index 000000000000..8f2601db39f3 --- /dev/null +++ b/tools/testing/selftests/sched_ext/hotplug.bpf.c @@ -0,0 +1,61 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#include + +char _license[] SEC("license") = "GPL"; + +#include "hotplug_test.h" + +UEI_DEFINE(uei); + +void BPF_STRUCT_OPS(hotplug_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +static void exit_from_hotplug(s32 cpu, bool onlining) +{ + /* + * Ignored, just used to verify that we can invoke blocking kfuncs + * from the hotplug path. + */ + scx_bpf_create_dsq(0, -1); + + s64 code = SCX_ECODE_ACT_RESTART | HOTPLUG_EXIT_RSN; + + if (onlining) + code |= HOTPLUG_ONLINING; + + scx_bpf_exit(code, "hotplug event detected (%d going %s)", cpu, + onlining ? "online" : "offline"); +} + +void BPF_STRUCT_OPS_SLEEPABLE(hotplug_cpu_online, s32 cpu) +{ + exit_from_hotplug(cpu, true); +} + +void BPF_STRUCT_OPS_SLEEPABLE(hotplug_cpu_offline, s32 cpu) +{ + exit_from_hotplug(cpu, false); +} + +SEC(".struct_ops.link") +struct sched_ext_ops hotplug_cb_ops = { + .cpu_online = hotplug_cpu_online, + .cpu_offline = hotplug_cpu_offline, + .exit = hotplug_exit, + .name = "hotplug_cbs", + .timeout_ms = 1000U, +}; + +SEC(".struct_ops.link") +struct sched_ext_ops hotplug_nocb_ops = { + .exit = hotplug_exit, + .name = "hotplug_nocbs", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/hotplug.c b/tools/testing/selftests/sched_ext/hotplug.c new file mode 100644 index 000000000000..87bf220b1bce --- /dev/null +++ b/tools/testing/selftests/sched_ext/hotplug.c @@ -0,0 +1,168 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include +#include + +#include "hotplug_test.h" +#include "hotplug.bpf.skel.h" +#include "scx_test.h" +#include "util.h" + +const char *online_path = "/sys/devices/system/cpu/cpu1/online"; + +static bool is_cpu_online(void) +{ + return file_read_long(online_path) > 0; +} + +static void toggle_online_status(bool online) +{ + long val = online ? 1 : 0; + int ret; + + ret = file_write_long(online_path, val); + if (ret != 0) + fprintf(stderr, "Failed to bring CPU %s (%s)", + online ? "online" : "offline", strerror(errno)); +} + +static enum scx_test_status setup(void **ctx) +{ + if (!is_cpu_online()) + return SCX_TEST_SKIP; + + return SCX_TEST_PASS; +} + +static enum scx_test_status test_hotplug(bool onlining, bool cbs_defined) +{ + struct hotplug *skel; + struct bpf_link *link; + long kind, code; + + SCX_ASSERT(is_cpu_online()); + + skel = hotplug__open_and_load(); + SCX_ASSERT(skel); + + /* Testing the offline -> online path, so go offline before starting */ + if (onlining) + toggle_online_status(0); + + if (cbs_defined) { + kind = SCX_KIND_VAL(SCX_EXIT_UNREG_BPF); + code = SCX_ECODE_VAL(SCX_ECODE_ACT_RESTART) | HOTPLUG_EXIT_RSN; + if (onlining) + code |= HOTPLUG_ONLINING; + } else { + kind = SCX_KIND_VAL(SCX_EXIT_UNREG_KERN); + code = SCX_ECODE_VAL(SCX_ECODE_ACT_RESTART) | + SCX_ECODE_VAL(SCX_ECODE_RSN_HOTPLUG); + } + + if (cbs_defined) + link = bpf_map__attach_struct_ops(skel->maps.hotplug_cb_ops); + else + link = bpf_map__attach_struct_ops(skel->maps.hotplug_nocb_ops); + + if (!link) { + SCX_ERR("Failed to attach scheduler"); + hotplug__destroy(skel); + return SCX_TEST_FAIL; + } + + toggle_online_status(onlining ? 1 : 0); + + while (!UEI_EXITED(skel, uei)) + sched_yield(); + + SCX_EQ(skel->data->uei.kind, kind); + SCX_EQ(UEI_REPORT(skel, uei), code); + + if (!onlining) + toggle_online_status(1); + + bpf_link__destroy(link); + hotplug__destroy(skel); + + return SCX_TEST_PASS; +} + +static enum scx_test_status test_hotplug_attach(void) +{ + struct hotplug *skel; + struct bpf_link *link; + enum scx_test_status status = SCX_TEST_PASS; + long kind, code; + + SCX_ASSERT(is_cpu_online()); + SCX_ASSERT(scx_hotplug_seq() > 0); + + skel = SCX_OPS_OPEN(hotplug_nocb_ops, hotplug); + SCX_ASSERT(skel); + + SCX_OPS_LOAD(skel, hotplug_nocb_ops, hotplug, uei); + + /* + * Take the CPU offline to increment the global hotplug seq, which + * should cause attach to fail due to us setting the hotplug seq above + */ + toggle_online_status(0); + link = bpf_map__attach_struct_ops(skel->maps.hotplug_nocb_ops); + + toggle_online_status(1); + + SCX_ASSERT(link); + while (!UEI_EXITED(skel, uei)) + sched_yield(); + + kind = SCX_KIND_VAL(SCX_EXIT_UNREG_KERN); + code = SCX_ECODE_VAL(SCX_ECODE_ACT_RESTART) | + SCX_ECODE_VAL(SCX_ECODE_RSN_HOTPLUG); + SCX_EQ(skel->data->uei.kind, kind); + SCX_EQ(UEI_REPORT(skel, uei), code); + + bpf_link__destroy(link); + hotplug__destroy(skel); + + return status; +} + +static enum scx_test_status run(void *ctx) +{ + +#define HP_TEST(__onlining, __cbs_defined) ({ \ + if (test_hotplug(__onlining, __cbs_defined) != SCX_TEST_PASS) \ + return SCX_TEST_FAIL; \ +}) + + HP_TEST(true, true); + HP_TEST(false, true); + HP_TEST(true, false); + HP_TEST(false, false); + +#undef HP_TEST + + return test_hotplug_attach(); +} + +static void cleanup(void *ctx) +{ + toggle_online_status(1); +} + +struct scx_test hotplug_test = { + .name = "hotplug", + .description = "Verify hotplug behavior", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&hotplug_test) diff --git a/tools/testing/selftests/sched_ext/hotplug_test.h b/tools/testing/selftests/sched_ext/hotplug_test.h new file mode 100644 index 000000000000..73d236f90787 --- /dev/null +++ b/tools/testing/selftests/sched_ext/hotplug_test.h @@ -0,0 +1,15 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#ifndef __HOTPLUG_TEST_H__ +#define __HOTPLUG_TEST_H__ + +enum hotplug_test_flags { + HOTPLUG_EXIT_RSN = 1LLU << 0, + HOTPLUG_ONLINING = 1LLU << 1, +}; + +#endif // # __HOTPLUG_TEST_H__ diff --git a/tools/testing/selftests/sched_ext/init_enable_count.bpf.c b/tools/testing/selftests/sched_ext/init_enable_count.bpf.c new file mode 100644 index 000000000000..47ea89a626c3 --- /dev/null +++ b/tools/testing/selftests/sched_ext/init_enable_count.bpf.c @@ -0,0 +1,53 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that verifies that we do proper counting of init, enable, etc + * callbacks. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +u64 init_task_cnt, exit_task_cnt, enable_cnt, disable_cnt; +u64 init_fork_cnt, init_transition_cnt; + +s32 BPF_STRUCT_OPS_SLEEPABLE(cnt_init_task, struct task_struct *p, + struct scx_init_task_args *args) +{ + __sync_fetch_and_add(&init_task_cnt, 1); + + if (args->fork) + __sync_fetch_and_add(&init_fork_cnt, 1); + else + __sync_fetch_and_add(&init_transition_cnt, 1); + + return 0; +} + +void BPF_STRUCT_OPS(cnt_exit_task, struct task_struct *p) +{ + __sync_fetch_and_add(&exit_task_cnt, 1); +} + +void BPF_STRUCT_OPS(cnt_enable, struct task_struct *p) +{ + __sync_fetch_and_add(&enable_cnt, 1); +} + +void BPF_STRUCT_OPS(cnt_disable, struct task_struct *p) +{ + __sync_fetch_and_add(&disable_cnt, 1); +} + +SEC(".struct_ops.link") +struct sched_ext_ops init_enable_count_ops = { + .init_task = cnt_init_task, + .exit_task = cnt_exit_task, + .enable = cnt_enable, + .disable = cnt_disable, + .name = "init_enable_count", +}; diff --git a/tools/testing/selftests/sched_ext/init_enable_count.c b/tools/testing/selftests/sched_ext/init_enable_count.c new file mode 100644 index 000000000000..97d45f1e5597 --- /dev/null +++ b/tools/testing/selftests/sched_ext/init_enable_count.c @@ -0,0 +1,166 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include +#include +#include "scx_test.h" +#include "init_enable_count.bpf.skel.h" + +#define SCHED_EXT 7 + +static struct init_enable_count * +open_load_prog(bool global) +{ + struct init_enable_count *skel; + + skel = init_enable_count__open(); + SCX_BUG_ON(!skel, "Failed to open skel"); + + if (!global) + skel->struct_ops.init_enable_count_ops->flags |= SCX_OPS_SWITCH_PARTIAL; + + SCX_BUG_ON(init_enable_count__load(skel), "Failed to load skel"); + + return skel; +} + +static enum scx_test_status run_test(bool global) +{ + struct init_enable_count *skel; + struct bpf_link *link; + const u32 num_children = 5, num_pre_forks = 1024; + int ret, i, status; + struct sched_param param = {}; + pid_t pids[num_pre_forks]; + + skel = open_load_prog(global); + + /* + * Fork a bunch of children before we attach the scheduler so that we + * ensure (at least in practical terms) that there are more tasks that + * transition from SCHED_OTHER -> SCHED_EXT than there are tasks that + * take the fork() path either below or in other processes. + */ + for (i = 0; i < num_pre_forks; i++) { + pids[i] = fork(); + SCX_FAIL_IF(pids[i] < 0, "Failed to fork child"); + if (pids[i] == 0) { + sleep(1); + exit(0); + } + } + + link = bpf_map__attach_struct_ops(skel->maps.init_enable_count_ops); + SCX_FAIL_IF(!link, "Failed to attach struct_ops"); + + for (i = 0; i < num_pre_forks; i++) { + SCX_FAIL_IF(waitpid(pids[i], &status, 0) != pids[i], + "Failed to wait for pre-forked child\n"); + + SCX_FAIL_IF(status != 0, "Pre-forked child %d exited with status %d\n", i, + status); + } + + bpf_link__destroy(link); + SCX_GE(skel->bss->init_task_cnt, num_pre_forks); + SCX_GE(skel->bss->exit_task_cnt, num_pre_forks); + + link = bpf_map__attach_struct_ops(skel->maps.init_enable_count_ops); + SCX_FAIL_IF(!link, "Failed to attach struct_ops"); + + /* SCHED_EXT children */ + for (i = 0; i < num_children; i++) { + pids[i] = fork(); + SCX_FAIL_IF(pids[i] < 0, "Failed to fork child"); + + if (pids[i] == 0) { + ret = sched_setscheduler(0, SCHED_EXT, ¶m); + SCX_BUG_ON(ret, "Failed to set sched to sched_ext"); + + /* + * Reset to SCHED_OTHER for half of them. Counts for + * everything should still be the same regardless, as + * ops.disable() is invoked even if a task is still on + * SCHED_EXT before it exits. + */ + if (i % 2 == 0) { + ret = sched_setscheduler(0, SCHED_OTHER, ¶m); + SCX_BUG_ON(ret, "Failed to reset sched to normal"); + } + exit(0); + } + } + for (i = 0; i < num_children; i++) { + SCX_FAIL_IF(waitpid(pids[i], &status, 0) != pids[i], + "Failed to wait for SCX child\n"); + + SCX_FAIL_IF(status != 0, "SCX child %d exited with status %d\n", i, + status); + } + + /* SCHED_OTHER children */ + for (i = 0; i < num_children; i++) { + pids[i] = fork(); + if (pids[i] == 0) + exit(0); + } + + for (i = 0; i < num_children; i++) { + SCX_FAIL_IF(waitpid(pids[i], &status, 0) != pids[i], + "Failed to wait for normal child\n"); + + SCX_FAIL_IF(status != 0, "Normal child %d exited with status %d\n", i, + status); + } + + bpf_link__destroy(link); + + SCX_GE(skel->bss->init_task_cnt, 2 * num_children); + SCX_GE(skel->bss->exit_task_cnt, 2 * num_children); + + if (global) { + SCX_GE(skel->bss->enable_cnt, 2 * num_children); + SCX_GE(skel->bss->disable_cnt, 2 * num_children); + } else { + SCX_EQ(skel->bss->enable_cnt, num_children); + SCX_EQ(skel->bss->disable_cnt, num_children); + } + /* + * We forked a ton of tasks before we attached the scheduler above, so + * this should be fine. Technically it could be flaky if a ton of forks + * are happening at the same time in other processes, but that should + * be exceedingly unlikely. + */ + SCX_GT(skel->bss->init_transition_cnt, skel->bss->init_fork_cnt); + SCX_GE(skel->bss->init_fork_cnt, 2 * num_children); + + init_enable_count__destroy(skel); + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + enum scx_test_status status; + + status = run_test(true); + if (status != SCX_TEST_PASS) + return status; + + return run_test(false); +} + +struct scx_test init_enable_count = { + .name = "init_enable_count", + .description = "Verify we do the correct amount of counting of init, " + "enable, etc callbacks.", + .run = run, +}; +REGISTER_SCX_TEST(&init_enable_count) diff --git a/tools/testing/selftests/sched_ext/maximal.bpf.c b/tools/testing/selftests/sched_ext/maximal.bpf.c new file mode 100644 index 000000000000..44612fdaf399 --- /dev/null +++ b/tools/testing/selftests/sched_ext/maximal.bpf.c @@ -0,0 +1,132 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler with every callback defined. + * + * This scheduler defines every callback. + * + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#include + +char _license[] SEC("license") = "GPL"; + +s32 BPF_STRUCT_OPS(maximal_select_cpu, struct task_struct *p, s32 prev_cpu, + u64 wake_flags) +{ + return prev_cpu; +} + +void BPF_STRUCT_OPS(maximal_enqueue, struct task_struct *p, u64 enq_flags) +{ + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); +} + +void BPF_STRUCT_OPS(maximal_dequeue, struct task_struct *p, u64 deq_flags) +{} + +void BPF_STRUCT_OPS(maximal_dispatch, s32 cpu, struct task_struct *prev) +{ + scx_bpf_consume(SCX_DSQ_GLOBAL); +} + +void BPF_STRUCT_OPS(maximal_runnable, struct task_struct *p, u64 enq_flags) +{} + +void BPF_STRUCT_OPS(maximal_running, struct task_struct *p) +{} + +void BPF_STRUCT_OPS(maximal_stopping, struct task_struct *p, bool runnable) +{} + +void BPF_STRUCT_OPS(maximal_quiescent, struct task_struct *p, u64 deq_flags) +{} + +bool BPF_STRUCT_OPS(maximal_yield, struct task_struct *from, + struct task_struct *to) +{ + return false; +} + +bool BPF_STRUCT_OPS(maximal_core_sched_before, struct task_struct *a, + struct task_struct *b) +{ + return false; +} + +void BPF_STRUCT_OPS(maximal_set_weight, struct task_struct *p, u32 weight) +{} + +void BPF_STRUCT_OPS(maximal_set_cpumask, struct task_struct *p, + const struct cpumask *cpumask) +{} + +void BPF_STRUCT_OPS(maximal_update_idle, s32 cpu, bool idle) +{} + +void BPF_STRUCT_OPS(maximal_cpu_acquire, s32 cpu, + struct scx_cpu_acquire_args *args) +{} + +void BPF_STRUCT_OPS(maximal_cpu_release, s32 cpu, + struct scx_cpu_release_args *args) +{} + +void BPF_STRUCT_OPS(maximal_cpu_online, s32 cpu) +{} + +void BPF_STRUCT_OPS(maximal_cpu_offline, s32 cpu) +{} + +s32 BPF_STRUCT_OPS(maximal_init_task, struct task_struct *p, + struct scx_init_task_args *args) +{ + return 0; +} + +void BPF_STRUCT_OPS(maximal_enable, struct task_struct *p) +{} + +void BPF_STRUCT_OPS(maximal_exit_task, struct task_struct *p, + struct scx_exit_task_args *args) +{} + +void BPF_STRUCT_OPS(maximal_disable, struct task_struct *p) +{} + +s32 BPF_STRUCT_OPS_SLEEPABLE(maximal_init) +{ + return 0; +} + +void BPF_STRUCT_OPS(maximal_exit, struct scx_exit_info *info) +{} + +SEC(".struct_ops.link") +struct sched_ext_ops maximal_ops = { + .select_cpu = maximal_select_cpu, + .enqueue = maximal_enqueue, + .dequeue = maximal_dequeue, + .dispatch = maximal_dispatch, + .runnable = maximal_runnable, + .running = maximal_running, + .stopping = maximal_stopping, + .quiescent = maximal_quiescent, + .yield = maximal_yield, + .core_sched_before = maximal_core_sched_before, + .set_weight = maximal_set_weight, + .set_cpumask = maximal_set_cpumask, + .update_idle = maximal_update_idle, + .cpu_acquire = maximal_cpu_acquire, + .cpu_release = maximal_cpu_release, + .cpu_online = maximal_cpu_online, + .cpu_offline = maximal_cpu_offline, + .init_task = maximal_init_task, + .enable = maximal_enable, + .exit_task = maximal_exit_task, + .disable = maximal_disable, + .init = maximal_init, + .exit = maximal_exit, + .name = "maximal", +}; diff --git a/tools/testing/selftests/sched_ext/maximal.c b/tools/testing/selftests/sched_ext/maximal.c new file mode 100644 index 000000000000..f38fc973c380 --- /dev/null +++ b/tools/testing/selftests/sched_ext/maximal.c @@ -0,0 +1,51 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include "maximal.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct maximal *skel; + + skel = maximal__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct maximal *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.maximal_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct maximal *skel = ctx; + + maximal__destroy(skel); +} + +struct scx_test maximal = { + .name = "maximal", + .description = "Verify we can load a scheduler with every callback defined", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&maximal) diff --git a/tools/testing/selftests/sched_ext/maybe_null.bpf.c b/tools/testing/selftests/sched_ext/maybe_null.bpf.c new file mode 100644 index 000000000000..27d0f386acfb --- /dev/null +++ b/tools/testing/selftests/sched_ext/maybe_null.bpf.c @@ -0,0 +1,36 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + */ + +#include + +char _license[] SEC("license") = "GPL"; + +u64 vtime_test; + +void BPF_STRUCT_OPS(maybe_null_running, struct task_struct *p) +{} + +void BPF_STRUCT_OPS(maybe_null_success_dispatch, s32 cpu, struct task_struct *p) +{ + if (p != NULL) + vtime_test = p->scx.dsq_vtime; +} + +bool BPF_STRUCT_OPS(maybe_null_success_yield, struct task_struct *from, + struct task_struct *to) +{ + if (to) + bpf_printk("Yielding to %s[%d]", to->comm, to->pid); + + return false; +} + +SEC(".struct_ops.link") +struct sched_ext_ops maybe_null_success = { + .dispatch = maybe_null_success_dispatch, + .yield = maybe_null_success_yield, + .enable = maybe_null_running, + .name = "minimal", +}; diff --git a/tools/testing/selftests/sched_ext/maybe_null.c b/tools/testing/selftests/sched_ext/maybe_null.c new file mode 100644 index 000000000000..31cfafb0cf65 --- /dev/null +++ b/tools/testing/selftests/sched_ext/maybe_null.c @@ -0,0 +1,49 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + */ +#include +#include +#include +#include +#include "maybe_null.bpf.skel.h" +#include "maybe_null_fail_dsp.bpf.skel.h" +#include "maybe_null_fail_yld.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status run(void *ctx) +{ + struct maybe_null *skel; + struct maybe_null_fail_dsp *fail_dsp; + struct maybe_null_fail_yld *fail_yld; + + skel = maybe_null__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load maybe_null skel"); + return SCX_TEST_FAIL; + } + maybe_null__destroy(skel); + + fail_dsp = maybe_null_fail_dsp__open_and_load(); + if (fail_dsp) { + maybe_null_fail_dsp__destroy(fail_dsp); + SCX_ERR("Should failed to open and load maybe_null_fail_dsp skel"); + return SCX_TEST_FAIL; + } + + fail_yld = maybe_null_fail_yld__open_and_load(); + if (fail_yld) { + maybe_null_fail_yld__destroy(fail_yld); + SCX_ERR("Should failed to open and load maybe_null_fail_yld skel"); + return SCX_TEST_FAIL; + } + + return SCX_TEST_PASS; +} + +struct scx_test maybe_null = { + .name = "maybe_null", + .description = "Verify if PTR_MAYBE_NULL work for .dispatch", + .run = run, +}; +REGISTER_SCX_TEST(&maybe_null) diff --git a/tools/testing/selftests/sched_ext/maybe_null_fail_dsp.bpf.c b/tools/testing/selftests/sched_ext/maybe_null_fail_dsp.bpf.c new file mode 100644 index 000000000000..c0641050271d --- /dev/null +++ b/tools/testing/selftests/sched_ext/maybe_null_fail_dsp.bpf.c @@ -0,0 +1,25 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + */ + +#include + +char _license[] SEC("license") = "GPL"; + +u64 vtime_test; + +void BPF_STRUCT_OPS(maybe_null_running, struct task_struct *p) +{} + +void BPF_STRUCT_OPS(maybe_null_fail_dispatch, s32 cpu, struct task_struct *p) +{ + vtime_test = p->scx.dsq_vtime; +} + +SEC(".struct_ops.link") +struct sched_ext_ops maybe_null_fail = { + .dispatch = maybe_null_fail_dispatch, + .enable = maybe_null_running, + .name = "maybe_null_fail_dispatch", +}; diff --git a/tools/testing/selftests/sched_ext/maybe_null_fail_yld.bpf.c b/tools/testing/selftests/sched_ext/maybe_null_fail_yld.bpf.c new file mode 100644 index 000000000000..3c1740028e3b --- /dev/null +++ b/tools/testing/selftests/sched_ext/maybe_null_fail_yld.bpf.c @@ -0,0 +1,28 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + */ + +#include + +char _license[] SEC("license") = "GPL"; + +u64 vtime_test; + +void BPF_STRUCT_OPS(maybe_null_running, struct task_struct *p) +{} + +bool BPF_STRUCT_OPS(maybe_null_fail_yield, struct task_struct *from, + struct task_struct *to) +{ + bpf_printk("Yielding to %s[%d]", to->comm, to->pid); + + return false; +} + +SEC(".struct_ops.link") +struct sched_ext_ops maybe_null_fail = { + .yield = maybe_null_fail_yield, + .enable = maybe_null_running, + .name = "maybe_null_fail_yield", +}; diff --git a/tools/testing/selftests/sched_ext/minimal.bpf.c b/tools/testing/selftests/sched_ext/minimal.bpf.c new file mode 100644 index 000000000000..6a7eccef0104 --- /dev/null +++ b/tools/testing/selftests/sched_ext/minimal.bpf.c @@ -0,0 +1,21 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A completely minimal scheduler. + * + * This scheduler defines the absolute minimal set of struct sched_ext_ops + * fields: its name. It should _not_ fail to be loaded, and can be used to + * exercise the default scheduling paths in ext.c. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +SEC(".struct_ops.link") +struct sched_ext_ops minimal_ops = { + .name = "minimal", +}; diff --git a/tools/testing/selftests/sched_ext/minimal.c b/tools/testing/selftests/sched_ext/minimal.c new file mode 100644 index 000000000000..6c5db8ebbf8a --- /dev/null +++ b/tools/testing/selftests/sched_ext/minimal.c @@ -0,0 +1,58 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "minimal.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct minimal *skel; + + skel = minimal__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct minimal *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.minimal_ops); + if (!link) { + SCX_ERR("Failed to attach scheduler"); + return SCX_TEST_FAIL; + } + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct minimal *skel = ctx; + + minimal__destroy(skel); +} + +struct scx_test minimal = { + .name = "minimal", + .description = "Verify we can load a fully minimal scheduler", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&minimal) diff --git a/tools/testing/selftests/sched_ext/prog_run.bpf.c b/tools/testing/selftests/sched_ext/prog_run.bpf.c new file mode 100644 index 000000000000..6a4d7c48e3f2 --- /dev/null +++ b/tools/testing/selftests/sched_ext/prog_run.bpf.c @@ -0,0 +1,33 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates that we can invoke sched_ext kfuncs in + * BPF_PROG_TYPE_SYSCALL programs. + * + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#include + +UEI_DEFINE(uei); + +char _license[] SEC("license") = "GPL"; + +SEC("syscall") +int BPF_PROG(prog_run_syscall) +{ + scx_bpf_create_dsq(0, -1); + scx_bpf_exit(0xdeadbeef, "Exited from PROG_RUN"); + return 0; +} + +void BPF_STRUCT_OPS(prog_run_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops prog_run_ops = { + .exit = prog_run_exit, + .name = "prog_run", +}; diff --git a/tools/testing/selftests/sched_ext/prog_run.c b/tools/testing/selftests/sched_ext/prog_run.c new file mode 100644 index 000000000000..3cd57ef8daaa --- /dev/null +++ b/tools/testing/selftests/sched_ext/prog_run.c @@ -0,0 +1,78 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include +#include "prog_run.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct prog_run *skel; + + skel = prog_run__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct prog_run *skel = ctx; + struct bpf_link *link; + int prog_fd, err = 0; + + prog_fd = bpf_program__fd(skel->progs.prog_run_syscall); + if (prog_fd < 0) { + SCX_ERR("Failed to get BPF_PROG_RUN prog"); + return SCX_TEST_FAIL; + } + + LIBBPF_OPTS(bpf_test_run_opts, topts); + + link = bpf_map__attach_struct_ops(skel->maps.prog_run_ops); + if (!link) { + SCX_ERR("Failed to attach scheduler"); + close(prog_fd); + return SCX_TEST_FAIL; + } + + err = bpf_prog_test_run_opts(prog_fd, &topts); + SCX_EQ(err, 0); + + /* Assumes uei.kind is written last */ + while (skel->data->uei.kind == EXIT_KIND(SCX_EXIT_NONE)) + sched_yield(); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_UNREG_BPF)); + SCX_EQ(skel->data->uei.exit_code, 0xdeadbeef); + close(prog_fd); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct prog_run *skel = ctx; + + prog_run__destroy(skel); +} + +struct scx_test prog_run = { + .name = "prog_run", + .description = "Verify we can call into a scheduler with BPF_PROG_RUN, and invoke kfuncs", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&prog_run) diff --git a/tools/testing/selftests/sched_ext/reload_loop.c b/tools/testing/selftests/sched_ext/reload_loop.c new file mode 100644 index 000000000000..5cfba2d6e056 --- /dev/null +++ b/tools/testing/selftests/sched_ext/reload_loop.c @@ -0,0 +1,75 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include +#include "maximal.bpf.skel.h" +#include "scx_test.h" + +static struct maximal *skel; +static pthread_t threads[2]; + +bool force_exit = false; + +static enum scx_test_status setup(void **ctx) +{ + skel = maximal__open_and_load(); + if (!skel) { + SCX_ERR("Failed to open and load skel"); + return SCX_TEST_FAIL; + } + + return SCX_TEST_PASS; +} + +static void *do_reload_loop(void *arg) +{ + u32 i; + + for (i = 0; i < 1024 && !force_exit; i++) { + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.maximal_ops); + if (link) + bpf_link__destroy(link); + } + + return NULL; +} + +static enum scx_test_status run(void *ctx) +{ + int err; + void *ret; + + err = pthread_create(&threads[0], NULL, do_reload_loop, NULL); + SCX_FAIL_IF(err, "Failed to create thread 0"); + + err = pthread_create(&threads[1], NULL, do_reload_loop, NULL); + SCX_FAIL_IF(err, "Failed to create thread 1"); + + SCX_FAIL_IF(pthread_join(threads[0], &ret), "thread 0 failed"); + SCX_FAIL_IF(pthread_join(threads[1], &ret), "thread 1 failed"); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + force_exit = true; + maximal__destroy(skel); +} + +struct scx_test reload_loop = { + .name = "reload_loop", + .description = "Stress test loading and unloading schedulers repeatedly in a tight loop", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&reload_loop) diff --git a/tools/testing/selftests/sched_ext/runner.c b/tools/testing/selftests/sched_ext/runner.c new file mode 100644 index 000000000000..eab48c7ff309 --- /dev/null +++ b/tools/testing/selftests/sched_ext/runner.c @@ -0,0 +1,201 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include +#include +#include +#include +#include +#include "scx_test.h" + +const char help_fmt[] = +"The runner for sched_ext tests.\n" +"\n" +"The runner is statically linked against all testcases, and runs them all serially.\n" +"It's required for the testcases to be serial, as only a single host-wide sched_ext\n" +"scheduler may be loaded at any given time." +"\n" +"Usage: %s [-t TEST] [-h]\n" +"\n" +" -t TEST Only run tests whose name includes this string\n" +" -s Include print output for skipped tests\n" +" -q Don't print the test descriptions during run\n" +" -h Display this help and exit\n"; + +static volatile int exit_req; +static bool quiet, print_skipped; + +#define MAX_SCX_TESTS 2048 + +static struct scx_test __scx_tests[MAX_SCX_TESTS]; +static unsigned __scx_num_tests = 0; + +static void sigint_handler(int simple) +{ + exit_req = 1; +} + +static void print_test_preamble(const struct scx_test *test, bool quiet) +{ + printf("===== START =====\n"); + printf("TEST: %s\n", test->name); + if (!quiet) + printf("DESCRIPTION: %s\n", test->description); + printf("OUTPUT:\n"); +} + +static const char *status_to_result(enum scx_test_status status) +{ + switch (status) { + case SCX_TEST_PASS: + case SCX_TEST_SKIP: + return "ok"; + case SCX_TEST_FAIL: + return "not ok"; + default: + return ""; + } +} + +static void print_test_result(const struct scx_test *test, + enum scx_test_status status, + unsigned int testnum) +{ + const char *result = status_to_result(status); + const char *directive = status == SCX_TEST_SKIP ? "SKIP " : ""; + + printf("%s %u %s # %s\n", result, testnum, test->name, directive); + printf("===== END =====\n"); +} + +static bool should_skip_test(const struct scx_test *test, const char * filter) +{ + return !strstr(test->name, filter); +} + +static enum scx_test_status run_test(const struct scx_test *test) +{ + enum scx_test_status status; + void *context = NULL; + + if (test->setup) { + status = test->setup(&context); + if (status != SCX_TEST_PASS) + return status; + } + + status = test->run(context); + + if (test->cleanup) + test->cleanup(context); + + return status; +} + +static bool test_valid(const struct scx_test *test) +{ + if (!test) { + fprintf(stderr, "NULL test detected\n"); + return false; + } + + if (!test->name) { + fprintf(stderr, + "Test with no name found. Must specify test name.\n"); + return false; + } + + if (!test->description) { + fprintf(stderr, "Test %s requires description.\n", test->name); + return false; + } + + if (!test->run) { + fprintf(stderr, "Test %s has no run() callback\n", test->name); + return false; + } + + return true; +} + +int main(int argc, char **argv) +{ + const char *filter = NULL; + unsigned testnum = 0, i; + unsigned passed = 0, skipped = 0, failed = 0; + int opt; + + signal(SIGINT, sigint_handler); + signal(SIGTERM, sigint_handler); + + libbpf_set_strict_mode(LIBBPF_STRICT_ALL); + + while ((opt = getopt(argc, argv, "qst:h")) != -1) { + switch (opt) { + case 'q': + quiet = true; + break; + case 's': + print_skipped = true; + break; + case 't': + filter = optarg; + break; + default: + fprintf(stderr, help_fmt, basename(argv[0])); + return opt != 'h'; + } + } + + for (i = 0; i < __scx_num_tests; i++) { + enum scx_test_status status; + struct scx_test *test = &__scx_tests[i]; + + if (filter && should_skip_test(test, filter)) { + /* + * Printing the skipped tests and their preambles can + * add a lot of noise to the runner output. Printing + * this is only really useful for CI, so let's skip it + * by default. + */ + if (print_skipped) { + print_test_preamble(test, quiet); + print_test_result(test, SCX_TEST_SKIP, ++testnum); + } + continue; + } + + print_test_preamble(test, quiet); + status = run_test(test); + print_test_result(test, status, ++testnum); + switch (status) { + case SCX_TEST_PASS: + passed++; + break; + case SCX_TEST_SKIP: + skipped++; + break; + case SCX_TEST_FAIL: + failed++; + break; + } + } + printf("\n\n=============================\n\n"); + printf("RESULTS:\n\n"); + printf("PASSED: %u\n", passed); + printf("SKIPPED: %u\n", skipped); + printf("FAILED: %u\n", failed); + + return 0; +} + +void scx_test_register(struct scx_test *test) +{ + SCX_BUG_ON(!test_valid(test), "Invalid test found"); + SCX_BUG_ON(__scx_num_tests >= MAX_SCX_TESTS, "Maximum tests exceeded"); + + __scx_tests[__scx_num_tests++] = *test; +} diff --git a/tools/testing/selftests/sched_ext/scx_test.h b/tools/testing/selftests/sched_ext/scx_test.h new file mode 100644 index 000000000000..90b8d6915bb7 --- /dev/null +++ b/tools/testing/selftests/sched_ext/scx_test.h @@ -0,0 +1,131 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 Tejun Heo + * Copyright (c) 2023 David Vernet + */ + +#ifndef __SCX_TEST_H__ +#define __SCX_TEST_H__ + +#include +#include +#include + +enum scx_test_status { + SCX_TEST_PASS = 0, + SCX_TEST_SKIP, + SCX_TEST_FAIL, +}; + +#define EXIT_KIND(__ent) __COMPAT_ENUM_OR_ZERO("scx_exit_kind", #__ent) + +struct scx_test { + /** + * name - The name of the testcase. + */ + const char *name; + + /** + * description - A description of your testcase: what it tests and is + * meant to validate. + */ + const char *description; + + /* + * setup - Setup the test. + * @ctx: A pointer to a context object that will be passed to run and + * cleanup. + * + * An optional callback that allows a testcase to perform setup for its + * run. A test may return SCX_TEST_SKIP to skip the run. + */ + enum scx_test_status (*setup)(void **ctx); + + /* + * run - Run the test. + * @ctx: Context set in the setup() callback. If @ctx was not set in + * setup(), it is NULL. + * + * The main test. Callers should return one of: + * + * - SCX_TEST_PASS: Test passed + * - SCX_TEST_SKIP: Test should be skipped + * - SCX_TEST_FAIL: Test failed + * + * This callback must be defined. + */ + enum scx_test_status (*run)(void *ctx); + + /* + * cleanup - Perform cleanup following the test + * @ctx: Context set in the setup() callback. If @ctx was not set in + * setup(), it is NULL. + * + * An optional callback that allows a test to perform cleanup after + * being run. This callback is run even if the run() callback returns + * SCX_TEST_SKIP or SCX_TEST_FAIL. It is not run if setup() returns + * SCX_TEST_SKIP or SCX_TEST_FAIL. + */ + void (*cleanup)(void *ctx); +}; + +void scx_test_register(struct scx_test *test); + +#define REGISTER_SCX_TEST(__test) \ + __attribute__((constructor)) \ + static void ___scxregister##__LINE__(void) \ + { \ + scx_test_register(__test); \ + } + +#define SCX_ERR(__fmt, ...) \ + do { \ + fprintf(stderr, "ERR: %s:%d\n", __FILE__, __LINE__); \ + fprintf(stderr, __fmt"\n", ##__VA_ARGS__); \ + } while (0) + +#define SCX_FAIL(__fmt, ...) \ + do { \ + SCX_ERR(__fmt, ##__VA_ARGS__); \ + return SCX_TEST_FAIL; \ + } while (0) + +#define SCX_FAIL_IF(__cond, __fmt, ...) \ + do { \ + if (__cond) \ + SCX_FAIL(__fmt, ##__VA_ARGS__); \ + } while (0) + +#define SCX_GT(_x, _y) SCX_FAIL_IF((_x) <= (_y), "Expected %s > %s (%lu > %lu)", \ + #_x, #_y, (u64)(_x), (u64)(_y)) +#define SCX_GE(_x, _y) SCX_FAIL_IF((_x) < (_y), "Expected %s >= %s (%lu >= %lu)", \ + #_x, #_y, (u64)(_x), (u64)(_y)) +#define SCX_LT(_x, _y) SCX_FAIL_IF((_x) >= (_y), "Expected %s < %s (%lu < %lu)", \ + #_x, #_y, (u64)(_x), (u64)(_y)) +#define SCX_LE(_x, _y) SCX_FAIL_IF((_x) > (_y), "Expected %s <= %s (%lu <= %lu)", \ + #_x, #_y, (u64)(_x), (u64)(_y)) +#define SCX_EQ(_x, _y) SCX_FAIL_IF((_x) != (_y), "Expected %s == %s (%lu == %lu)", \ + #_x, #_y, (u64)(_x), (u64)(_y)) +#define SCX_ASSERT(_x) SCX_FAIL_IF(!(_x), "Expected %s to be true (%lu)", \ + #_x, (u64)(_x)) + +#define SCX_ECODE_VAL(__ecode) ({ \ + u64 __val = 0; \ + bool __found = false; \ + \ + __found = __COMPAT_read_enum("scx_exit_code", #__ecode, &__val); \ + SCX_ASSERT(__found); \ + (s64)__val; \ +}) + +#define SCX_KIND_VAL(__kind) ({ \ + u64 __val = 0; \ + bool __found = false; \ + \ + __found = __COMPAT_read_enum("scx_exit_kind", #__kind, &__val); \ + SCX_ASSERT(__found); \ + __val; \ +}) + +#endif // # __SCX_TEST_H__ diff --git a/tools/testing/selftests/sched_ext/select_cpu_dfl.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_dfl.bpf.c new file mode 100644 index 000000000000..2ed2991afafe --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dfl.bpf.c @@ -0,0 +1,40 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +bool saw_local = false; + +static bool task_is_test(const struct task_struct *p) +{ + return !bpf_strncmp(p->comm, 9, "select_cpu"); +} + +void BPF_STRUCT_OPS(select_cpu_dfl_enqueue, struct task_struct *p, + u64 enq_flags) +{ + const struct cpumask *idle_mask = scx_bpf_get_idle_cpumask(); + + if (task_is_test(p) && + bpf_cpumask_test_cpu(scx_bpf_task_cpu(p), idle_mask)) { + saw_local = true; + } + scx_bpf_put_idle_cpumask(idle_mask); + + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, enq_flags); +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_dfl_ops = { + .enqueue = select_cpu_dfl_enqueue, + .name = "select_cpu_dfl", +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_dfl.c b/tools/testing/selftests/sched_ext/select_cpu_dfl.c new file mode 100644 index 000000000000..a53a40c2d2f0 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dfl.c @@ -0,0 +1,72 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_dfl.bpf.skel.h" +#include "scx_test.h" + +#define NUM_CHILDREN 1028 + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_dfl *skel; + + skel = select_cpu_dfl__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_dfl *skel = ctx; + struct bpf_link *link; + pid_t pids[NUM_CHILDREN]; + int i, status; + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_dfl_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + for (i = 0; i < NUM_CHILDREN; i++) { + pids[i] = fork(); + if (pids[i] == 0) { + sleep(1); + exit(0); + } + } + + for (i = 0; i < NUM_CHILDREN; i++) { + SCX_EQ(waitpid(pids[i], &status, 0), pids[i]); + SCX_EQ(status, 0); + } + + SCX_ASSERT(!skel->bss->saw_local); + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_dfl *skel = ctx; + + select_cpu_dfl__destroy(skel); +} + +struct scx_test select_cpu_dfl = { + .name = "select_cpu_dfl", + .description = "Verify the default ops.select_cpu() dispatches tasks " + "when idles cores are found, and skips ops.enqueue()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_dfl) diff --git a/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.bpf.c new file mode 100644 index 000000000000..4bb5abb2d369 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.bpf.c @@ -0,0 +1,89 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation, and with the SCX_OPS_ENQ_DFL_NO_DISPATCH ops flag + * specified. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +bool saw_local = false; + +/* Per-task scheduling context */ +struct task_ctx { + bool force_local; /* CPU changed by ops.select_cpu() */ +}; + +struct { + __uint(type, BPF_MAP_TYPE_TASK_STORAGE); + __uint(map_flags, BPF_F_NO_PREALLOC); + __type(key, int); + __type(value, struct task_ctx); +} task_ctx_stor SEC(".maps"); + +/* Manually specify the signature until the kfunc is added to the scx repo. */ +s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags, + bool *found) __ksym; + +s32 BPF_STRUCT_OPS(select_cpu_dfl_nodispatch_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + struct task_ctx *tctx; + s32 cpu; + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return -ESRCH; + } + + cpu = scx_bpf_select_cpu_dfl(p, prev_cpu, wake_flags, + &tctx->force_local); + + return cpu; +} + +void BPF_STRUCT_OPS(select_cpu_dfl_nodispatch_enqueue, struct task_struct *p, + u64 enq_flags) +{ + u64 dsq_id = SCX_DSQ_GLOBAL; + struct task_ctx *tctx; + + tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0); + if (!tctx) { + scx_bpf_error("task_ctx lookup failed"); + return; + } + + if (tctx->force_local) { + dsq_id = SCX_DSQ_LOCAL; + tctx->force_local = false; + saw_local = true; + } + + scx_bpf_dispatch(p, dsq_id, SCX_SLICE_DFL, enq_flags); +} + +s32 BPF_STRUCT_OPS(select_cpu_dfl_nodispatch_init_task, + struct task_struct *p, struct scx_init_task_args *args) +{ + if (bpf_task_storage_get(&task_ctx_stor, p, 0, + BPF_LOCAL_STORAGE_GET_F_CREATE)) + return 0; + else + return -ENOMEM; +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_dfl_nodispatch_ops = { + .select_cpu = select_cpu_dfl_nodispatch_select_cpu, + .enqueue = select_cpu_dfl_nodispatch_enqueue, + .init_task = select_cpu_dfl_nodispatch_init_task, + .name = "select_cpu_dfl_nodispatch", +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.c b/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.c new file mode 100644 index 000000000000..1d85bf4bf3a3 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dfl_nodispatch.c @@ -0,0 +1,72 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_dfl_nodispatch.bpf.skel.h" +#include "scx_test.h" + +#define NUM_CHILDREN 1028 + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_dfl_nodispatch *skel; + + skel = select_cpu_dfl_nodispatch__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_dfl_nodispatch *skel = ctx; + struct bpf_link *link; + pid_t pids[NUM_CHILDREN]; + int i, status; + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_dfl_nodispatch_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + for (i = 0; i < NUM_CHILDREN; i++) { + pids[i] = fork(); + if (pids[i] == 0) { + sleep(1); + exit(0); + } + } + + for (i = 0; i < NUM_CHILDREN; i++) { + SCX_EQ(waitpid(pids[i], &status, 0), pids[i]); + SCX_EQ(status, 0); + } + + SCX_ASSERT(skel->bss->saw_local); + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_dfl_nodispatch *skel = ctx; + + select_cpu_dfl_nodispatch__destroy(skel); +} + +struct scx_test select_cpu_dfl_nodispatch = { + .name = "select_cpu_dfl_nodispatch", + .description = "Verify behavior of scx_bpf_select_cpu_dfl() in " + "ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_dfl_nodispatch) diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch.bpf.c new file mode 100644 index 000000000000..f0b96a4a04b2 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch.bpf.c @@ -0,0 +1,41 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +s32 BPF_STRUCT_OPS(select_cpu_dispatch_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + u64 dsq_id = SCX_DSQ_LOCAL; + s32 cpu = prev_cpu; + + if (scx_bpf_test_and_clear_cpu_idle(cpu)) + goto dispatch; + + cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + goto dispatch; + + dsq_id = SCX_DSQ_GLOBAL; + cpu = prev_cpu; + +dispatch: + scx_bpf_dispatch(p, dsq_id, SCX_SLICE_DFL, 0); + return cpu; +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_dispatch_ops = { + .select_cpu = select_cpu_dispatch_select_cpu, + .name = "select_cpu_dispatch", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch.c new file mode 100644 index 000000000000..0309ca8785b3 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch.c @@ -0,0 +1,70 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_dispatch.bpf.skel.h" +#include "scx_test.h" + +#define NUM_CHILDREN 1028 + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_dispatch *skel; + + skel = select_cpu_dispatch__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_dispatch *skel = ctx; + struct bpf_link *link; + pid_t pids[NUM_CHILDREN]; + int i, status; + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_dispatch_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + for (i = 0; i < NUM_CHILDREN; i++) { + pids[i] = fork(); + if (pids[i] == 0) { + sleep(1); + exit(0); + } + } + + for (i = 0; i < NUM_CHILDREN; i++) { + SCX_EQ(waitpid(pids[i], &status, 0), pids[i]); + SCX_EQ(status, 0); + } + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_dispatch *skel = ctx; + + select_cpu_dispatch__destroy(skel); +} + +struct scx_test select_cpu_dispatch = { + .name = "select_cpu_dispatch", + .description = "Test direct dispatching to built-in DSQs from " + "ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_dispatch) diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.bpf.c new file mode 100644 index 000000000000..7b42ddce0f56 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.bpf.c @@ -0,0 +1,37 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +UEI_DEFINE(uei); + +s32 BPF_STRUCT_OPS(select_cpu_dispatch_bad_dsq_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + /* Dispatching to a random DSQ should fail. */ + scx_bpf_dispatch(p, 0xcafef00d, SCX_SLICE_DFL, 0); + + return prev_cpu; +} + +void BPF_STRUCT_OPS(select_cpu_dispatch_bad_dsq_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_dispatch_bad_dsq_ops = { + .select_cpu = select_cpu_dispatch_bad_dsq_select_cpu, + .exit = select_cpu_dispatch_bad_dsq_exit, + .name = "select_cpu_dispatch_bad_dsq", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.c new file mode 100644 index 000000000000..47eb6ed7627d --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch_bad_dsq.c @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_dispatch_bad_dsq.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_dispatch_bad_dsq *skel; + + skel = select_cpu_dispatch_bad_dsq__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_dispatch_bad_dsq *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_dispatch_bad_dsq_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + sleep(1); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_ERROR)); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_dispatch_bad_dsq *skel = ctx; + + select_cpu_dispatch_bad_dsq__destroy(skel); +} + +struct scx_test select_cpu_dispatch_bad_dsq = { + .name = "select_cpu_dispatch_bad_dsq", + .description = "Verify graceful failure if we direct-dispatch to a " + "bogus DSQ in ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_dispatch_bad_dsq) diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.bpf.c new file mode 100644 index 000000000000..653e3dc0b4dc --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.bpf.c @@ -0,0 +1,38 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates the behavior of direct dispatching with a default + * select_cpu implementation. + * + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +UEI_DEFINE(uei); + +s32 BPF_STRUCT_OPS(select_cpu_dispatch_dbl_dsp_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + /* Dispatching twice in a row is disallowed. */ + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, 0); + scx_bpf_dispatch(p, SCX_DSQ_GLOBAL, SCX_SLICE_DFL, 0); + + return prev_cpu; +} + +void BPF_STRUCT_OPS(select_cpu_dispatch_dbl_dsp_exit, struct scx_exit_info *ei) +{ + UEI_RECORD(uei, ei); +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_dispatch_dbl_dsp_ops = { + .select_cpu = select_cpu_dispatch_dbl_dsp_select_cpu, + .exit = select_cpu_dispatch_dbl_dsp_exit, + .name = "select_cpu_dispatch_dbl_dsp", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.c b/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.c new file mode 100644 index 000000000000..48ff028a3c46 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_dispatch_dbl_dsp.c @@ -0,0 +1,56 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2023 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2023 David Vernet + * Copyright (c) 2023 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_dispatch_dbl_dsp.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_dispatch_dbl_dsp *skel; + + skel = select_cpu_dispatch_dbl_dsp__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_dispatch_dbl_dsp *skel = ctx; + struct bpf_link *link; + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_dispatch_dbl_dsp_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + sleep(1); + + SCX_EQ(skel->data->uei.kind, EXIT_KIND(SCX_EXIT_ERROR)); + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_dispatch_dbl_dsp *skel = ctx; + + select_cpu_dispatch_dbl_dsp__destroy(skel); +} + +struct scx_test select_cpu_dispatch_dbl_dsp = { + .name = "select_cpu_dispatch_dbl_dsp", + .description = "Verify graceful failure if we dispatch twice to a " + "DSQ in ops.select_cpu()", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_dispatch_dbl_dsp) diff --git a/tools/testing/selftests/sched_ext/select_cpu_vtime.bpf.c b/tools/testing/selftests/sched_ext/select_cpu_vtime.bpf.c new file mode 100644 index 000000000000..7f3ebf4fc2ea --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_vtime.bpf.c @@ -0,0 +1,92 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * A scheduler that validates that enqueue flags are properly stored and + * applied at dispatch time when a task is directly dispatched from + * ops.select_cpu(). We validate this by using scx_bpf_dispatch_vtime(), and + * making the test a very basic vtime scheduler. + * + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ + +#include + +char _license[] SEC("license") = "GPL"; + +volatile bool consumed; + +static u64 vtime_now; + +#define VTIME_DSQ 0 + +static inline bool vtime_before(u64 a, u64 b) +{ + return (s64)(a - b) < 0; +} + +static inline u64 task_vtime(const struct task_struct *p) +{ + u64 vtime = p->scx.dsq_vtime; + + if (vtime_before(vtime, vtime_now - SCX_SLICE_DFL)) + return vtime_now - SCX_SLICE_DFL; + else + return vtime; +} + +s32 BPF_STRUCT_OPS(select_cpu_vtime_select_cpu, struct task_struct *p, + s32 prev_cpu, u64 wake_flags) +{ + s32 cpu; + + cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0); + if (cpu >= 0) + goto ddsp; + + cpu = prev_cpu; + scx_bpf_test_and_clear_cpu_idle(cpu); +ddsp: + scx_bpf_dispatch_vtime(p, VTIME_DSQ, SCX_SLICE_DFL, task_vtime(p), 0); + return cpu; +} + +void BPF_STRUCT_OPS(select_cpu_vtime_dispatch, s32 cpu, struct task_struct *p) +{ + if (scx_bpf_consume(VTIME_DSQ)) + consumed = true; +} + +void BPF_STRUCT_OPS(select_cpu_vtime_running, struct task_struct *p) +{ + if (vtime_before(vtime_now, p->scx.dsq_vtime)) + vtime_now = p->scx.dsq_vtime; +} + +void BPF_STRUCT_OPS(select_cpu_vtime_stopping, struct task_struct *p, + bool runnable) +{ + p->scx.dsq_vtime += (SCX_SLICE_DFL - p->scx.slice) * 100 / p->scx.weight; +} + +void BPF_STRUCT_OPS(select_cpu_vtime_enable, struct task_struct *p) +{ + p->scx.dsq_vtime = vtime_now; +} + +s32 BPF_STRUCT_OPS_SLEEPABLE(select_cpu_vtime_init) +{ + return scx_bpf_create_dsq(VTIME_DSQ, -1); +} + +SEC(".struct_ops.link") +struct sched_ext_ops select_cpu_vtime_ops = { + .select_cpu = select_cpu_vtime_select_cpu, + .dispatch = select_cpu_vtime_dispatch, + .running = select_cpu_vtime_running, + .stopping = select_cpu_vtime_stopping, + .enable = select_cpu_vtime_enable, + .init = select_cpu_vtime_init, + .name = "select_cpu_vtime", + .timeout_ms = 1000U, +}; diff --git a/tools/testing/selftests/sched_ext/select_cpu_vtime.c b/tools/testing/selftests/sched_ext/select_cpu_vtime.c new file mode 100644 index 000000000000..b4629c2364f5 --- /dev/null +++ b/tools/testing/selftests/sched_ext/select_cpu_vtime.c @@ -0,0 +1,59 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + * Copyright (c) 2024 Tejun Heo + */ +#include +#include +#include +#include +#include "select_cpu_vtime.bpf.skel.h" +#include "scx_test.h" + +static enum scx_test_status setup(void **ctx) +{ + struct select_cpu_vtime *skel; + + skel = select_cpu_vtime__open_and_load(); + SCX_FAIL_IF(!skel, "Failed to open and load skel"); + *ctx = skel; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + struct select_cpu_vtime *skel = ctx; + struct bpf_link *link; + + SCX_ASSERT(!skel->bss->consumed); + + link = bpf_map__attach_struct_ops(skel->maps.select_cpu_vtime_ops); + SCX_FAIL_IF(!link, "Failed to attach scheduler"); + + sleep(1); + + SCX_ASSERT(skel->bss->consumed); + + bpf_link__destroy(link); + + return SCX_TEST_PASS; +} + +static void cleanup(void *ctx) +{ + struct select_cpu_vtime *skel = ctx; + + select_cpu_vtime__destroy(skel); +} + +struct scx_test select_cpu_vtime = { + .name = "select_cpu_vtime", + .description = "Test doing direct vtime-dispatching from " + "ops.select_cpu(), to a non-built-in DSQ", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&select_cpu_vtime) diff --git a/tools/testing/selftests/sched_ext/test_example.c b/tools/testing/selftests/sched_ext/test_example.c new file mode 100644 index 000000000000..ce36cdf03cdc --- /dev/null +++ b/tools/testing/selftests/sched_ext/test_example.c @@ -0,0 +1,49 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 Tejun Heo + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include "scx_test.h" + +static bool setup_called = false; +static bool run_called = false; +static bool cleanup_called = false; + +static int context = 10; + +static enum scx_test_status setup(void **ctx) +{ + setup_called = true; + *ctx = &context; + + return SCX_TEST_PASS; +} + +static enum scx_test_status run(void *ctx) +{ + int *arg = ctx; + + SCX_ASSERT(setup_called); + SCX_ASSERT(!run_called && !cleanup_called); + SCX_EQ(*arg, context); + + run_called = true; + return SCX_TEST_PASS; +} + +static void cleanup (void *ctx) +{ + SCX_BUG_ON(!run_called || cleanup_called, "Wrong callbacks invoked"); +} + +struct scx_test example = { + .name = "example", + .description = "Validate the basic function of the test suite itself", + .setup = setup, + .run = run, + .cleanup = cleanup, +}; +REGISTER_SCX_TEST(&example) diff --git a/tools/testing/selftests/sched_ext/util.c b/tools/testing/selftests/sched_ext/util.c new file mode 100644 index 000000000000..e47769c91918 --- /dev/null +++ b/tools/testing/selftests/sched_ext/util.c @@ -0,0 +1,71 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ +#include +#include +#include +#include +#include +#include + +/* Returns read len on success, or -errno on failure. */ +static ssize_t read_text(const char *path, char *buf, size_t max_len) +{ + ssize_t len; + int fd; + + fd = open(path, O_RDONLY); + if (fd < 0) + return -errno; + + len = read(fd, buf, max_len - 1); + + if (len >= 0) + buf[len] = 0; + + close(fd); + return len < 0 ? -errno : len; +} + +/* Returns written len on success, or -errno on failure. */ +static ssize_t write_text(const char *path, char *buf, ssize_t len) +{ + int fd; + ssize_t written; + + fd = open(path, O_WRONLY | O_APPEND); + if (fd < 0) + return -errno; + + written = write(fd, buf, len); + close(fd); + return written < 0 ? -errno : written; +} + +long file_read_long(const char *path) +{ + char buf[128]; + + + if (read_text(path, buf, sizeof(buf)) <= 0) + return -1; + + return atol(buf); +} + +int file_write_long(const char *path, long val) +{ + char buf[64]; + int ret; + + ret = sprintf(buf, "%lu", val); + if (ret < 0) + return ret; + + if (write_text(path, buf, sizeof(buf)) <= 0) + return -1; + + return 0; +} diff --git a/tools/testing/selftests/sched_ext/util.h b/tools/testing/selftests/sched_ext/util.h new file mode 100644 index 000000000000..bc13dfec1267 --- /dev/null +++ b/tools/testing/selftests/sched_ext/util.h @@ -0,0 +1,13 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. + * Copyright (c) 2024 David Vernet + */ + +#ifndef __SCX_TEST_UTIL_H__ +#define __SCX_TEST_UTIL_H__ + +long file_read_long(const char *path); +int file_write_long(const char *path, long val); + +#endif // __SCX_TEST_H__ -- 2.46.0.rc1